NIKOLAS LYMBERIS SCURO
5 resultados
Resultados de Busca
Agora exibindo 1 - 5 de 5
Artigo IPEN-doc 27846 A simulation model for capacity planning of nuclear fuel plants for research reactors2021 - NEGRO, M.L.N.; DURAZZO, M.; MESQUITA, M.A.; SCURO, N.L.; CARVALHO, E.F.U.; ANDRADE, D.A.The demand for nuclear fuel for research reactors is increasing worldwide. However, some nuclear fuel factories have low production volumes. Literature regarding how to expand the capacity of those facilities in a safe and reliable way is scarce. Thus, the purpose of this work is to propose and validate a conceptual model for increasing the production capacity of such factories. The facilities addressed here are those that produce plate-type fuel elements loaded with LEU U3Si2-Al, which are typically used in nuclear research reactors. Data from a real nuclear fuel plant was collected and applied to the model, thus setting up a case study. Two different strategies, as well as several production scenarios, were conceived for the use of the model. Each scenario experiments with the different possibilities of enlarging capacity. Discrete events simulation was used in order to cover all production scenarios. The tests indicated significant increases in productive capacity, thus showing that the model fully achieved its proposed objective. One of the main conclusions to be highlighted is the model’s effectiveness, which was demonstrated by using the model in two different strategies and obtaining increases in capacity with both of them.Artigo IPEN-doc 26385 Preliminary numerical analysis of the flow distribution in the core of a research reactor2019 - SCURO, NIKOLAS L.; ANGELO, GABRIEL; ANGELO, E.; TORRES, WALMIR M.; UMBEHAUN, PEDRO E.; ANDRADE, DELVONEI A. deThe thermal-hydraulic safety analysis of research reactors establishes the safety criteria to ensure the integrity of the fuel elements in the reactor core. It assures that all core components are being adequately cooled during operation. It is necessary to know if the average mass flow rate (and their standard deviation) among the fuel assemblies are enough to cool the power generated during operation. Once satisfied such condition, it allows the calculation of the maximum heat flux transferred from fuel assemblies to the coolant, and if the maximum cladding temperatures are below the limits set by the safety criteria. Among the objectives, this study presents a methodology for a preliminary three-dimensional numerical analysis of the flow distribution in the core of the IEA-R1 research reactor, under steady state condition. For this, the ANSYS-CFX® commercial code was used to analyze the flow dynamics in the core, and to visualize the velocity field. It was possible to conclude that a homogeneous flow distribution for all standard fuel assemblies were found, with 2.7% deviation from the average mass flow. What turned out to be negligible and can be assumed that there is a homogeneous distribution in the core. Complex structures were find in the computational domain. Once known the core flow dynamics, it allows future studies to determine whether the heat flux and temperature conditions abbeys thermal-hydraulic safety criteria.Dissertação IPEN-doc 26107 Simulação numérica de um acidente tipo perda lenta de vazão em um reator nuclear de pesquisa2019 - SCURO, NIKOLAS L.As simulações numéricas de acidentes em reatores nucleares de pesquisa necessitam de constante aprimoramento, originando metodologias validadas, o que permite aproximar os cálculos numéricos a um comportamento físico. O trabalho proposto consiste em elaborar uma metodologia numérica tridimensional para análise de um acidente tipo perda lenta de vazão, comumente nomeado de SLOFA, do inglês, slow loss of flow accident, para o reator nuclear IEA-R1. Utilizando códigos numéricos para escoamentos tridimensionais (ANSYS CFX®) foi possível observar a dinâmica do escoamento, prever a localização da temperatura máxima do revestimento e o instante da inversão do sentido de escoamento. Sete modelos de turbulência foram analisados individualmente para elaboração da metodologia, porém, inúmeras dificuldades foram observadas no processo de solução para os modelos ZE, EVTE, SSG, k - ε, k - ω, SST e DES. O modelo que atendeu aos requisitos estabelecidos, entre eles, tempo computacional e solução numérica compatível com solução física, foi o modelo de turbulência k - ω. Entre as justificativas para este resultado pode-se citar a ausência da lei logarítmica de parede e simplicidade na solução das equações de transporte para condição analisada. Os resultados apresentaram alinhamento quantitativo e qualitativo com as curvas de temperatura experimentais. Nas condições de regime permanente quanto para o regime transiente, o desvio máximo observado foi de 3,4°C para temperatura. As curvas de temperatura numérica capturam o mesmo comportamento físico observado nos testes experimentais, tanto no instante da inversão do escoamento, quanto no início da perda dos efeitos do empuxo. Portanto, esta metodologia tridimensional representa um avanço frente aos resultados apresentados pelos códigos unidimensionais reportados na literatura (RELAP, MERSAT, CATHARE) para a mesma base de dados experimental, visto que o desvio médio observado nestes códigos é de 7,2°C.Artigo IPEN-doc 24804 Thermal hydraulic analysis improvement for the IEA-R1 research reactor and fuel assembly design modification2018 - UMBEHAUN, PEDRO E.; TORRES, WALMIR M.; SOUZA, JOSE A.B.; YAMAGUCHI, MITSUO; SILVA, ANTONIO T. e; MESQUITA, ROBERTO N. de; SCURO, NIKOLAS L.; ANDRADE, DELVONEI A. deThis paper presents the sequence of activities to improve the thermal hydraulic analysis of the IEA-R1 research reactor to operate in safe conditions after power upgrade from 2 to 5 MW and core size reduction from 30 to 24 fuel assemblies. A realistic analysis needs the knowledge of the actual operation conditions (heat flow, flow rates) beyond the geometric data and the uncertainties associated with manufacturing and measures. A dummy fuel assembly was designed and constructed to measure the actual flow rate through the core fuel assemblies and its pressure drop. First results showed that the flow distribution over the core is nearly uniform. Nevertheless, the values are below than the calculated ones and the core bypass flow rate is greater than those estimated previously. Based on this, several activities were performed to identify and reduce the bypass flow, such as reduction of the flow rate through the sample irradiators, closing some unnecessary secondary holes on the matrix plate, improvement in the primary flow rate system and better fit of the core components on the matrix plate. A sub-aquatic visual system was used as an important tool to detect some bypass flow path. After these modifications, the fuel assemblies flow rate increased about 13%. Additional tests using the dummy fuel assembly were carried out to measure the internal flow distribution among the rectangular channels. The results showed that the flow rate through the outer channels is 10% - 15% lower than the internal ones. The flow rate in the channel formed between two adjacent fuel assemblies is an estimated parameter and it is difficult to measure because this is an open channel. A new thermal hydraulic analysis of the outermost plates of the fuel assemblies takes into account all this information. Then, a fuel design modification was proposed with the reduction of 50% in the uranium quantity in the outermost fuel plates. In order to avoid the oxidation of the outermost plates by high temperature, low flow rate, a reduction of 50% in the uranium density in the same ones was shown to be adequate to solve the problem.Artigo IPEN-doc 24791 Transient cfd analysis of the flow inversion of the nuclear research reactor IEA-R12018 - SCURO, N.L.; SANTOS, P.G.; UMBEHAUN, P.E.; ANDRADE, D.A.; ANGELO, E.; ANGELO, G.The IEA-R1 research reactor works with a downflow direction, but after pumps shutdown during a LOFA test, the reactor shutdown. The heat decay will be removed by natural convection, which is an upward flow, originating flow inversion. Using the Instrumented Fuel Element designed at the Institute for Energy and Nuclear Research (IPEN), the loss of flow accident (LOFA) was analyzed along instrumented fuel plates. The preliminary results showed temperature peaks during inversion, which is as much representative as in nominal operation at 3.5MW. Therefore, these experimental data lead a construction and validation of a transient three-dimensional numerical analysis for a single fuel channel using the ANSYS-CFX® commercial code. The numerical results show improvement in obtaining more properties, e.g., wall heat transfer coefficient, which is usually obtained through empirical correlations.