NIKOLAS LYMBERIS SCURO
3 resultados
Resultados de Busca
Agora exibindo 1 - 3 de 3
Artigo IPEN-doc 29684 Computational fluid dynamics analysis of an open-pool nuclear research reactor core for fluid flow optimization using a channel box2023 - SCURO, N.L.; ANGELO, G.; ANGELO, E.; PIRO, M.H.A.; UMBEHAUN, P.E.; TORRES, W.M.; ANDRADE, D.A.A channel box installation in the IEA-R1 research reactor core was numerically investigated to increase fluid flow in fuel assemblies (FAs) and side water channels (SWCs) between FAs by minimizing bypasses in specific regions of the reactor core, which is expected to reduce temperatures and oxidation effects in lateral fuel plates (LFPs). To achieve this objective, an isothermal three-dimensional computational fluid dynamics model was created using Ansys CFX to analyze fluid flow distribution in the Brazilian IEA-R1 research reactor core. All regions of the core and realistic boundary conditions were considered, and a detailed mesh convergence study is presented. Results comparing both scenarios are presented in the percentage of use of the primary circuit pump. It is indicated that 21.4% of fluid bypass to unnecessary regions can be avoided with the channel box installation, which leads to the total mass flow from the primary circuit for all FAs increasing from 68.9% (without a channel box) to 77.6% (with a channel box). For the SWCs, responsible for cooling LFPs, an increment from 9.7% to 22.4%, avoiding all nondesired cross three-dimensional effects, was observed, resulting in a more homogeneous fluid flow and vertical velocities. It was concluded that the installation of a channel box numerically indicates an expressive mass flow increase and homogeneous fluid flow distribution for flow dynamics in relevant regions. This gives greater confidence to believe that lower temperatures, and consequently oxidation effects in LFPs, can be expected with a channel box installation.Dissertação IPEN-doc 26107 Simulação numérica de um acidente tipo perda lenta de vazão em um reator nuclear de pesquisa2019 - SCURO, NIKOLAS L.As simulações numéricas de acidentes em reatores nucleares de pesquisa necessitam de constante aprimoramento, originando metodologias validadas, o que permite aproximar os cálculos numéricos a um comportamento físico. O trabalho proposto consiste em elaborar uma metodologia numérica tridimensional para análise de um acidente tipo perda lenta de vazão, comumente nomeado de SLOFA, do inglês, slow loss of flow accident, para o reator nuclear IEA-R1. Utilizando códigos numéricos para escoamentos tridimensionais (ANSYS CFX®) foi possível observar a dinâmica do escoamento, prever a localização da temperatura máxima do revestimento e o instante da inversão do sentido de escoamento. Sete modelos de turbulência foram analisados individualmente para elaboração da metodologia, porém, inúmeras dificuldades foram observadas no processo de solução para os modelos ZE, EVTE, SSG, k - ε, k - ω, SST e DES. O modelo que atendeu aos requisitos estabelecidos, entre eles, tempo computacional e solução numérica compatível com solução física, foi o modelo de turbulência k - ω. Entre as justificativas para este resultado pode-se citar a ausência da lei logarítmica de parede e simplicidade na solução das equações de transporte para condição analisada. Os resultados apresentaram alinhamento quantitativo e qualitativo com as curvas de temperatura experimentais. Nas condições de regime permanente quanto para o regime transiente, o desvio máximo observado foi de 3,4°C para temperatura. As curvas de temperatura numérica capturam o mesmo comportamento físico observado nos testes experimentais, tanto no instante da inversão do escoamento, quanto no início da perda dos efeitos do empuxo. Portanto, esta metodologia tridimensional representa um avanço frente aos resultados apresentados pelos códigos unidimensionais reportados na literatura (RELAP, MERSAT, CATHARE) para a mesma base de dados experimental, visto que o desvio médio observado nestes códigos é de 7,2°C.Artigo IPEN-doc 24791 Transient cfd analysis of the flow inversion of the nuclear research reactor IEA-R12018 - SCURO, N.L.; SANTOS, P.G.; UMBEHAUN, P.E.; ANDRADE, D.A.; ANGELO, E.; ANGELO, G.The IEA-R1 research reactor works with a downflow direction, but after pumps shutdown during a LOFA test, the reactor shutdown. The heat decay will be removed by natural convection, which is an upward flow, originating flow inversion. Using the Instrumented Fuel Element designed at the Institute for Energy and Nuclear Research (IPEN), the loss of flow accident (LOFA) was analyzed along instrumented fuel plates. The preliminary results showed temperature peaks during inversion, which is as much representative as in nominal operation at 3.5MW. Therefore, these experimental data lead a construction and validation of a transient three-dimensional numerical analysis for a single fuel channel using the ANSYS-CFX® commercial code. The numerical results show improvement in obtaining more properties, e.g., wall heat transfer coefficient, which is usually obtained through empirical correlations.