PAULO DE TARSO DALLEDONE SIQUEIRA
7 resultados
Resultados de Busca
Agora exibindo 1 - 7 de 7
Artigo IPEN-doc 30387 Thermal neutron dose measurements using TLD-100 detectors in the IPEN/MB-01 reactor core2024 - CAVALIERI, TASSIO A.; SIQUEIRA, PAULO de T.D.; SHORTO, JULIAN M.B.; YORIYAZ, HELIOConsiderable experimental effort has been aimed at uncovering a reliable way to perform a dosimetric assessment in mixed radiation fields. In fields composed by gammas and neutrons, TLD dosimeters are usually applied to execute such measurements, although there is no consensus on the most favorable strategy to employ them. In this context, TLD-100 measurements within two different core configurations of the IPEN/MB-01 research reactor and Monte Carlo simulations have been used to investigate the behavior of those detectors in multiple mixed radiation fields, deriving a methodology to evaluate the dose deposition in the dosimeter by different gamma and neutron energy spectra and intensities. A surprising outcome is the linear neutron dose response shown by TLD-100 even irradiated by so distinct irradiation fields.Artigo IPEN-doc 30038 Heterogeneous physical phantom for I-125 dose measurements and dose-to-medium determination2024 - ANTUNES, PAULA C.G.; SIQUEIRA, PAULO de T.D.; SHORTO, JULIAN M.B.; YORIYAZ, HELIOPURPOSE: In this paper we present a further step in the implementation of a physical phantom designed to generate sets of “true”independent reference data as requested by TG-186, intending to address and mitigate the scarcity of experimental studies on brachytherapy (BT) validation in heterogeneous media. To achieve this, we incorporated well-known heterogeneous materials into the phantom in order to perform measurements of 125I dose distribution. The work aims to experimentally validate Monte Carlo (MC) calculations based on MBDCA and determine the conversion factors from LiF response to absorbed dose in different media, using cavity theory. METHODS AND MATERIALS: The physical phantom was adjusted to incorporate tissue equivalent materials, such as: adipose tissue, bone, breast and lung with varying thickness. MC calculations were performed using MCNP6.2 code to calculate the absorbed dose in the LiF and the dose conversion factors (DCF). RESULTS: The proposed heterogeneous phantom associated with the experimental procedure carried out in this work yielded accurate dose data that enabled the conversion of the LiF responses into absorbed dose to medium. The results showed a maximum uncertainty of 6.92 % ( k = 1), which may be considered excellent for dosimetry with low-energy BT sources. CONCLUSIONS: The presented heterogeneous phantom achieves the required precision in dose evaluations due to its easy reproducibility in the experimental setup. The obtained results support the dose conversion methodology for all evaluated media. The experimental validation of the DCF in different media holds great significance for clinical procedures, as it can be applied to other tissues, including water, which remains a widely utilized reference medium in clinical practice.Artigo IPEN-doc 29631 A versatile physical phantom design and construction for I-125 dose measurements and dose-to-medium determination2023 - ANTUNES, PAULA C.G.; SIQUEIRA, PAULO de T.D.; SHORTO, JULIAN M.B.; YORIYAZ, HELIOPURPOSE: In this paper we present a phantom designed to provide conditions to generate set of “true” independent reference data as requested by TG-186, and mitigating the scarcity of experimental studies on brachytherapy validation. It was used to perform accurate experimental measurements of dose of 125I brachytherapy seeds using LiF dosimeters, with the objective of experimentally validating Monte Carlo (MC) calculations with model-based dose calculation algorithm (MBDCA). In addition, this work intends to evaluate a methodology to convert the experimental values from LiF into dose in the medium. METHODS AND MATERIALS: The proposed PMMA physical phantom features cavities to insert a LiF dosimeter and a 125I seed, adjusted in different configurations with variable thickness. Monte Carlo calculations performed with MCNP6.2 code were used to score the absorbed dose in the LiF and the dose conversion parameters. A sensitivity analysis was done to verify the source of possible uncertainties and quantify their impact on the results. RESULTS: The proposed phantom and experimental procedure developed in this work provided precise dose data within 5.68% uncertainty (k = 1). The achieved precision made it possible to convert the LiF responses into absorbed dose to medium and to validate the dose conversion factor methodology. CONCLUSIONS: The proposed phantom is simple both in design and as in its composition, thus achieving the demanded precision in dose evaluations due to its easy reproducibility of experimental setup. The results derived from the phantom measurements support the dose conversion methodology. The phantom and the experimental procedure developed here can be applied for other materials and radiation sources.Artigo IPEN-doc 27119 Variability2020 - SILVA JÚNIOR, IREMAR A. da; SIQUEIRA, PAULO de T.D.; NASCIMENTO, EDUARDO do; YORIYAZ, HELIO; SORDI, GIAN-MARIA A.A.; POTIENS, MARIA da P.A.In this paper we present the impact of variability, a surface source parameter, on the efficiency evaluation of surface contamination monitors. This study was based on two source uniformity correction methodologies and data from real surface source distributions. Surface source intensity distribution has been changed by rearranging the cells (portions of the active area of each LARS) while keeping the same source uniformity value. Instrument efficiencies have been calculated for different sets of uniformities and variabilities. This study led to emphasize the importance of variability, a differential source intensity distribution parameter, over the uniformity, an integral source intensity distribution parameter, and reinforced the importance of the source uniformity correction procedure on the course of surface contamination monitor calibration.Artigo IPEN-doc 27117 Correction factors for non-uniform large-area reference sources2020 - SILVA JÚNIOR, IREMAR A.; SIQUEIRA, PAULO de T.D.; NASCIMENTO, EDUARDO do; YORIYAZ, HELIO; SORDI, GIAN-MARIA A.A.; VIVOLO, VITOR; POTIENS, MARIA da P.A.Based on uniformity measurements of large-area reference sources used in calibration procedures of surface contamination monitors, an investigation was carried out to obtain a method that estimates the bias originated from surface source intensity distribution deviation from the ideal uniform distribution and corrects it. It relies on correcting the estimated instrument efficiency by applying correction factors driven from the uniformity distribution profiles of the sources used in calibration procedure. Simulations of the monitor calibration procedure are run for 2 distinct surface source distributions: the real and the ideally uniform distributions. Correction factors are driven from counting rate estimates obtained from each source representation. In order to evaluate adequacy of this proposition it was validated against a method proposed by the NPL in the Good Practices Guide No.14.Artigo IPEN-doc 25754 Design, fabrication and modeling of an AmBe neutron irradiator for TLD screening for neutron dose measurement in mixed radiation fields2019 - CAVALIERI, TASSIO A.; SIQUEIRA, PAULO T.D.; SHORTO, JULIAN M.B.; GENEZINI, FREDERICO A.; YORIYAZ, HELIOTLDs dosimeters are frequently presented as a viable choice for dosimetric studies when dealing with mixed neutron-gamma radiation fields. However, this choice is not without some drawbacks, because not only TLD response is highly dependent on particle type but also on neutron energy spectrum. Therefore, a correct screening and calibration of the dosimeter are required, and a simple shift from gamma screening methodology for mixed field is not suitable. This paper presents the design, fabrication and tests of an irradiator for TLD screening for neutron dose measurement using an AmBe source and polyethylene as moderator material. The design of the irradiator was conducted through Monte Carlo simulations using the MCNP5 code. The experimental validation and tests were performed using Indium activation foils and TLD 600 dosimeters. The manufactured irradiator demonstrated to be suitable for TLD screening under neutron source radiation field, offering very good homogeneity conditions in the radiation field so to guarantee same radiation dose delivered to the TLDs.Artigo IPEN-doc 21332 Study of pixel damages in CCD cameras irradiated at the neutron tomography facility of IPEN-CNEN/SP2015 - PUGLIESI, R.; ANDRADE, M.L.G.; DIAS, M.S.; SIQUEIRA, P.T.D.; PEREIRA, M.A.S.