SUZIMARA ROVANI
4 resultados
Resultados de Busca
Agora exibindo 1 - 4 de 4
Artigo IPEN-doc 27707 Study of renewable silica powder influence in the preparation of bioplastics from corn and potato starch2021 - AZEVEDO, LUCIANA C. de; ROVANI, SUZIMARA; SANTOS, JONNATAN J.; DIAS, DJALMA B.; NASCIMENTO, SANDI S.; OLIVEIRA, FABIO F.; SILVA, LEONARDO G.A.; FUNGARO, DENISE A.In the present study, 0.5–1.5% silica powder, from sugarcane waste ash, was incorporated into corn and potato starch bioplastics doped with sodium silicate solution to improve the properties of elongation at break and increase the thermal resistance of the bioplastics. The starch-based bioplastics were produced by casting and characterized by color analyses, transparency, opacity apparent, humidity, thickness, tensile strength, elongation at break, FTIR, DSC, SEM, and biodegradation assay. The addition of 0.5% of silica powder improved the elongation at break of the corn starch-based bioplastics. The sample CS5-P0.5 presented the highest percentage of elongation at the break among the studied samples, increased from 59.2% (without silica powder) to 78.9% (with silica powder). For potato starch bioplastic the addition of 0.5% of silica powder did not improve elongation at break but increased the thermal resistance. Increased until 17 °C for PS5-P0.5 sample and until 11 °C for PS7.5-P0.5 sample. The bioplastics of potato starch were biodegraded in 5 days, and those of corn starch took almost 40 days. Silica powder inhibited the growth of fungi in starch bioplastics.Artigo IPEN-doc 27252 Fast, efficient and clean adsorption of bisphenol-A using renewable mesoporous silica nanoparticles from sugarcane waste ash2020 - ROVANI, SUZIMARA; SANTOS, JONNATAN J.; GUILHEN, SABINE N.; CORIO, PAOLA; FUNGARO, DENISE A.Even with all the biological problems associated with bisphenol-A (BPA), this chemical is still being widely used, especially in thermal paper receipts. In this study, renewable mesoporous silica nanoparticles (MSN), obtained from sugarcane ash, functionalized with hexadecyltrimethylammonium (CTAB) were applied as an adsorbent in the removal of BPA from the aqueous solution. The versatility of this material and its BPA adsorption capacity were tested at different pH values, being practically constant at pH between 4 and 9, with a slight increase in pH 10 and a greater increase in pH 11. The removal time evaluation indicates a very fast adsorption process, removing almost 90% of BPA in the first 20 min of contact. The kinetic model indicates a monolayer formation of BPA molecules on the MSN-CTAB surface. The maximum adsorption capacity (Qmax) was 155.78 mg g-1, one of the highest found in literature, and the highest for material from a renewable source.Artigo IPEN-doc 25738 Application of biochar from agro‑industrial waste in solid‑phase extraction for the determination of 17β‑estradiol from aqueous solution2019 - ROVANI, S.; MEDEIROS, L.F.; LIMA, E.C.; FERNANDES, A.N.In this study, the biochar produced from coffee wastes and eucalyptus sawdust was employed as an adsorbent in solid-phase extraction devices for the determination of 17β-estradiol from aqueous solution. Parameters such as adsorbent mass, solvent type, eluent volume, ionic strength, breakthrough volume, and the cartridge reuse were evaluated. The best experimental conditions for solid-phase extraction concerning adsorbent mass, elution solvent, eluent volume, ionic strength, breakthrough volume, and cartridge reuse were established. The most suitable conditions for 1.0-mL cartridge were: mass of 50 mg, elution solvent 5.0 mL of acetonitrile/water 90:10 (v:v), 0.003 mol L−1 NaCl concentration, and 17β-estradiol solution volume 50.0 mL. The solid-phase extraction results showed that, although 17β-estradiol recovery was about 60%, the removal efficiency was 100% and the cartridges of 200 and 500 mg can be reused eight and four times, respectively, without any decrease in adsorption capacity. The results demonstrate the potential use of biochar as new adsorbent in solid-phase extraction devices for the removal of estrogens in aqueous solution.Artigo IPEN-doc 24783 Highly pure silica nanoparticles with high adsorption capacity obtained from sugarcane waste ash2018 - ROVANI, SUZIMARA; SANTOS, JONNATAN J.; CORIO, PAOLA; FUNGARO, DENISE A.Silica nanoparticles (SiO2NPs) from renewable sources can be used in very different materials, such as paints, membranes for fuel cells, Li-ion batteries, adsorbents, catalysts, and so on. Brazil is the world’s largest producer of sugarcane and generates huge amounts of sugarcane waste ash (SWA), which is a Si-rich source. This study investigates a method to produce highly pure SiO2NPs from SWA. The SiO2NPs were characterized by inductively coupled plasma optical emission spectroscopy, scanning and transmission electron microscopy (TEM), X-ray diffraction analyses, specific surface area and pore distribution, UV and Fourier transform infrared spectroscopy, and thermogravimetric analyses and applied as an adsorbent material in the removal of acid orange 8 (AO8) dye from aqueous solution. The SiO2 content was 88.68 and 99.08 wt % for SWA and SiO2NPs, respectively. TEM images of SWA and SiO2NPs exhibit drastic alterations of the material size ranging from several micrometers to less than 20 nm. The SiO2NPs showed a specific surface area of 131 m2 g–1 and adsorption capacity of around 230 mg g–1 for acid orange 8 dye. Furthermore, the recycling of the SiO2NPs adsorbent after AO8 adsorption was very satisfactory, with reuse for up to five cycles being possible. The results indicate that it was possible to obtain highly pure silica in a nanosize from the waste material and produce an adsorbent with high adsorption capacity and the possibility of reuse.