LUCAS VERDI ANGELOCCI
8 resultados
Resultados de Busca
Agora exibindo 1 - 8 de 8
Resumo IPEN-doc 26910 Efficiancy of hydrogen peroxide for cleaning production areas and equipments in the Laboratory for Brachyterapy Sources Production2017 - BAPTISTA, T.; ROSTELATO, M.C.M.; ZEITUNI, C.; PERINI, E.A.; SOUZA, C.D. de; MARQUES, J. de O.; NOGUEIRA, B.R.; ANGELOCCI, L.V.Purpose: A great challenge in the brachytherapy sources production is to fulfill the Good Manufacturing Practices (GMPs) requirements, involving the process validation and of all supporting activities such as cleaning and sanitization. The increasingly strict requirements for quality assurance system, with several norms, normative resolutions and rules that must follow both medical products and radiochemical requirements, has led to a constant validation concerns. The main goal of GMP is to reduce inherent risks such as product contamination with microorganisms and cross-contamination. Methods: In the Laboratory for Brachytherapy Sources Production it was established a cleaning program for cleanrooms and hot cells using a hydrogen peroxide solution (6%). This work aims to assess the effectiveness of this cleaning agent in reducing and/or eliminating microbial load into the cleanrooms and equipments to acceptable levels in accordance with the current legislation. Results: The analysis was conducted using the results of the environmental monitoring program with settling contact plates in cleanrooms after the cleaning procedures. Furthermore, it was possible to evaluate the action of the sanitizing agent on the microbial population at the equipment and cleanrooms’ surfaces. It was also evaluated the best way to accomplish the cleaning program considering the dosimetry factor in each production process, hence the importance of radiological contamination. All the following environmental monitoring procedures presented satisfactory results, showing that the cleaning procedures was able to reduce and maintain the acceptable levels of viable and non-viable particles for the cleanroom classification (ISO 5 and ISO 7). The cleaning process with this sanitizer (hydrogen peroxide) can be performed quickly right before the production; allowing the production of brachytherapy sources without after use residues. Conclusion: This data will help the production of a clean and reliable product.Artigo IPEN-doc 26136 End-weld thickness variation effects on dose rate for a new ir-192 brachytherapy source2019 - ANGELOCCI, LUCAS V.; NOGUEIRA, BEATRIZ R.; ABREU, RODRIGO T.; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.Brachytherapy is a form of radiation therapy that uses small sealed sources close to the tumor to deliver a high dose to target while keeping dose on neighboring healthy tissues as low as possible. A wide variety of radionuclides and different sources are available for brachytherapy, each with his own unique geometry. The Laboratory of Sources Production for Radiotherapy (IPEN/CNEN) developed a new Ir-192 seed for eye tumor treatment that is currently under dosimetric definition. This work is part of a larger project that aims the full dosimetry of this new source, but rather than calculate the usual parameters proposed by the American Association of Physicists in Medicine, the specific contribution to the dose rate of a usually not considered factor was investigated under a statistical approach: end-weld thickness variation, which is important due to this source being welded by an in-house method. Its effects were investigated using the Monte Carlo radiation transport code MCNP4C and an in-house routine programmed with MATLAB® to analyze the data. Final results are presented as a mean value for dose rate at different points of interest and their associated standard deviations. The results are discussed based on the influence of said parameter on different points around the source.Artigo IPEN-doc 26133 Anisotropy function of a new 192-Ir brachytherapy source2019 - ABREU, RODRIGO T.; ANGELOCCI, LUCAS V.; NOGUEIRA, BEATRIZ R.; SANTOS, HAMONA N. dos; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.Brachytherapy is a type of radiotherapy that uses radioactive sources (seeds, wires, among others) close to the tumor. Is important to provide a detailed description of seed dosimetry, so only the tumor will be irradiated avoiding unnecessary dose on adjacent organs and structures. To evaluate the dosimetric parameter of the anisotropy function for a new brachytherapy source, this work proposes the use of microcube TLD-100 dosimeters to find the dose rate using the AAPM Task Group 43 protocol (TG-43). The anisotropy function represents dose distribution around the source and has a major role for characterization of a new iridium source being implemented in Brazil. The value of D(r,θ) was measured using Solid Water phantoms, r value being the distance from the geometric center of the source to the position of the dosimeter on the phantom, and θ being the angle formed between the longitudinal axis of the source and the line connecting the geometric center to the TLD. Monte Carlo calculations were performed to evaluate the anisotropy function to validate the experimental measurements. For each distance value (r), an anisotropy function was plotted (1.0, 2.0, 3.0, 4.0, 5.0, and 10.0 cm). The results obtained with Monte Carlo calculations agreed ±2% with the experimental values for r greater than 3.0 cm, so these results show a good distribution of dose around the seed considering the high energy of 192-Ir (average of 380 KeV) and encapsulation thickness.Artigo IPEN-doc 26132 Dose-rate constant and air-kerma strength evaluation of a new 125-I brachytherapy source using Monte-Carlo2019 - PRIMO, CAMILA de O.; ANGELOCCI, LUCAS V.; KARAM JUNIOR, DIB; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.Brachytherapy is a modality of radiotherapy which treats tumors using ionizing radiation with sources located close to the tumor. The sources can be produced from several radionuclides in various formats, such as Iodine-125 seeds and Iridium-192 wires. In order to produce a new Iodine-125 seed in IPEN/CNEN and ensure its quality, it is essential to describe the dosimetry of the seed, so when applied in a treatment the lowest possible dose to neighboring healthy tissues can be reached. The report by the AAPM’s Task Group 43 U1 is a document that indicates the dosimetry procedures in brachytherapy based on physical and geometrical parameters. In this study, dose-rate constant and air-kerma strength parameters were simulated using the Monte Carlo method radiation transport code MCNP4C. The air-kerma strength is obtained from an ideal modeled seed, since its actual value should be measured for seeds individually in a specialized lab with a Wide-Angle Free-Air Chamber (WAFAC). Dose-rate constant and air-kerma strength are parameters that depends on intrinsic characteristics of the source, i.e. geometry, radionuclide, encapsulation, and together they define the dose-rate to the reference point, defined as the dose-rate to a point 1 cm away from the geometric center of the source, in its transverse plane. This study presents the values found for these parameters with associated statistical uncertainty, and is part of a larger project that aims the full dosimetry of this new seed model, including experimental measures.Resumo IPEN-doc 26056 Dose-rate constant evaluation of a new 192-Ir brachytherapy source using Monte-Carlo and experimental parameters2019 - ABREU, R.T.; ANGELOCCI, L.V.; NOGUEIRA, B.R.; SANTOS, H.N.; ZEITUNI, C.A.; ROSTELATO, M.E.C.M.Artigo IPEN-doc 25055 Mesh-based human eye anatomy for Monte Carlo dose calculation2018 - ANGELOCCI, LUCAS V.; YORIYAZ, HELIOPurpose: The purpose of this work is to explore the capability of the MCNP6 unstructured mesh geometry resources to create an eye and tumor anatomic model for ophthalmic brachytherapy dosimetry. Methods: Abaqus/CAE software was utilized to construct three anatomic eye models using first order tetrahedral mesh elements: a model with a 2 cm in diameter deep tumor; a model with a 1.2 cm in diameter deep tumor; and a model with a 1.2 cm superficial tumor. 2 cm and 1.2 cm COMS applicators fully loaded with Amersham 6711125I seeds were coupled to the eye models for dose calculation using the MCNP6 code. The dose values in the structures of the eye were compared to those obtained using analytical models. Results: Unstructured mesh model has small differences (maximum of 3.4%) in the mass values of the components of the eye comparing to those obtained in the analytical model. Excluding the optical nerve wall, all dose differences were beneath 4% for all structures. The overall dose in the eye agrees within 2% between different models. Conclusions: The feasibility of using unstructured mesh based geometries to model fine structures of the eye has been verified in this study. It was possible to create adequately the anatomic model of the human eye with reproducible dose values compared to reference values.Dissertação IPEN-doc 21980 Estudo de casos clínicos em radioterapia através do sistema de planejamento AMIGOBrachy2016 - ANGELOCCI, LUCAS V.O sucesso de uma radioterapia depende do correto planejamento da dose a ser entregue ao volume alvo. Na braquiterapia, modalidade da radioterapia onde um radioisótopo selado é implantado intracavitariamente ou intersticialmente no paciente, há menos avanços em sistemas de planejamento de tratamento computacionais do que na teleterapia, amplamente mais utilizada nos serviços típicos. Porém, a braquiterapia, quando aplicável, é preferível por poupar tecidos sadios vizinhos de uma dose desnecessária. O AMIGOBrachy, um sistema de planejamento para braquiterapia de interface amigável, compatibilidade com outros sistemas comerciais em uso e integrado ao código MCNP6 (Monte Carlo N-Particle Transport Code v. 6) foi desenvolvido no Centro de Engenharia Nuclear do Instituto de Pesquisas Energéticas e Nucleares (CEN-IPEN) e atualmente está em processo de validação. Este trabalho contribuiu para este processo, avaliando três diferentes casos clínicos através do AMIGOBrachy com o formalismo do TG43 da AAPM (Associação Americana de Física Médica), protocolo que rege a dosimetria em braquiterapia, e comparando seus resultados com as distribuições de dose calculadas por outros sistemas comerciais consagrados: Varian BrachyVision TM (Varian Medical Systems; Palo Alto, CA, EUA) e Nucletron Oncentra® (Elekta; Estocolmo, Suécia). Os resultados obtidos estão dentro de uma faixa de concordância de ±10%, estando mais discrepantes em regiões muito próximas do aplicador, onde os sistemas de planejamento comerciais e o AMIGOBrachy divergem devido aos diferentes métodos de cálculo. Em pelo menos dois terços da região de interesse, porém, a dose concordou em uma faixa de ±3% para os três casos. Também foram realizadas simulações utilizando o formalismo do TG186 da AAPM, que considera heterogeneidades no tecido, para avaliar o impacto dos mesmos na dose. Em adição ao processo de validação, também foi realizado um estudo em braquiterapia oftálmica para posterior inserção de um módulo adicional ao AMIGOBrachy; para isso, um modelo de olho humano foi desenvolvido utilizando geometria UM (Unstructured Mesh), para validação com o código MCNP6, que apenas nesta versão demonstra um novo recurso capaz de simular uma geometria híbrida: parcialmente analítica, parcialmente UM. O modelo considera dez diferentes estruturas no olho humano: esclera, coroide, retina, corpo vítreo, córnea, câmara anterior, lente, nervo óptico, parede do nervo óptico, e um tumor definido de forma arbitrária crescendo da superfície externa do globo ocular em direção ao seu centro. Os resultados foram comparados com um modelo de olho puramente analítico modelado com o MCNP6 e tomado como referência. Os resultados foram satisfatórios em todas as simulações desenvolvidas, exceto para as estruturas do nervo óptico e sua parede, que devido ao seu pequeno tamanho e distância da fonte, mostraram erros relativos maiores, mas ainda menores que 10%, e não representam problema de preocupação clínica uma vez que recebem doses muito pequenas. Discutiu-se também a eficácia e problemas encontrados nessa nova capacidade do código MCNP de simular geometrias híbridas, uma vez que é recente e ainda apresenta deficiências, que tiveram que ser contornadas no presente trabalho.Artigo IPEN-doc 21052 Human eye analytical and mesh-geometry models for opthtalmic dosimetry using MCNP62015 - ANGELOCCI, LUCAS V.; FONSECA, GABRIEL P.; YORIYAZ, HELIO