LARISSA OLIVEIRA BERBEL
2 results
Search Results
Now showing 1 - 2 of 2
Artigo IPEN-doc 28131 Study of corrosion of AA 3003 aluminum in biodiesel, diesel, ethanol and gasoline media2020 - SOARES, M.; BERBEL, L.O.; VIEIRA, C.; OLISZESKI, D.C.S.; FURSTENBERGER, C.B.; BANCZEK, E.P.The contact between fuels and various metals used in vehicles make them susceptible to corrosion. Aluminum is a metal widely used in automotive components owing to its corrosion resistance as well as mechanical properties. The ABNT 14359 standard establishes a method for determining fuel corrosion; however, it is restricted to copper and fossil fuels. In this standard, corrosion is assessed qualitatively by visual comparison of patterns, which can lead to uncertain results. The methodology used in this study involves the immersion of metallic materials in fuels for a specific period of time for further analysis by scanning electron microscopy (SEM), and electrochemical analysis by electrochemical impedance spectroscopy (EIS) and anodic potentiodynamic polarization (APP). The results indicated that aluminum alloy AA 3003 is suitable for use in the production of vehicle components that will be in contact with biodiesel, diesel, ethanol, or gasoline, since no serious case of corrosion occurred.Artigo IPEN-doc 27600 Modifications of titanium and zirconium alloy surfaces for use as dental implants2020 - LEITE, DANIELA M.C.; ALENCAR, MAICON C. de; MUCSI, CRISTIANO S.; ARAUJO, JOAO V.S.; TAVARES, LUIZ A.; BERBEL, LARISSA O.; ARANHA, LUIS C.; ROSSI, JESUALDO L.The use of dental implants of titanium and its alloys has proved to be effective, through well established and documented parameters, both in the dimensions and in the manufacturing processes and also in the surgical techniques. There are clinical situations where there is a need to reduce the diameter of the implants, below 3.75 mm in diameter. In the current state of art of the implant technology it is desirable that these also have surfaces capable of decreasing the period of osseointegration. In the present work, to improve the mechanical strength of the material, an alloy of 80% of Ti and 20% of Zr % in mass was proposed and elaborated, aiming its use as biomaterial. Physical, chemical, microstructural and mechanical characterization was carried out. The surfaces of the treated samples were observed using: scanning electron microscopy (SEM); semi quantitatively chemically analyzed using dispersive energy spectroscopy (EDS: wettability of the samples was determined and, finally, the roughness was measured using optical profilometry. For the conditions used in the present work, it was concluded, that the best surface treatment for the TiZr 80/20 alloy was acid etching with 1% vol. hydrofluoric acid for 5 minutes, as this treatment presented the most prominent results of wettability and roughness simultaneously.