SONIA REGINA HOMEM DE MELLO CASTANHO

Resumo

Graduada em Engenharia de Materiais (UFSCar, Universidade Federal de São Carlos), Mestre em Tecnologia Nuclear (IPEN/USP, Universidade de São Paulo) e Doutora em Ciências Químicas-Cerâmicos (UAM/ES -ICV/CSIC, Universidad Autónoma de Madrid, Espanha e Instituto de Ceramica y Vidrio/CSIC de Espanha). Ela é Pesquisadora Senior e atualmente Gestora Adjunta em Pesquisa e Desenvolvimento do Centro de Ciências e Tecnologia de Materiais (CCTM) do Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP). É Professora da Universidade de São Paulo (USP), no programa de posgraduação Tecnologia Nuclear - Materiais. Coordenadora do grupo de pesquisas (GP/CNPq) em Materiais e Meio Ambiente. Principais áreas de atuação: - Energias Renováveis (células a combustível, catalizadores e biomassa), - Ambiental (mitigação, inertização e requalificação de efluentes e subprodutos de processos extrativistas e industriais, diretivas ambientais (RhOS, WEEE)), - Cerâmicas Biocompatíveis (vidros, compósitos multifuncionais para a implantologia). Experiência em gestão de Centro de Pesquisas, gestão ambiental, gestão de projetos, planejamento composicional de materiais, processamento coloidal, reologia, vidros e vitroceramicos, compósitos multifuncionais e nanoestruturas naturais. (Texto extraído do Currículo Lattes em 27 dez. 2021)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 7 de 7
  • Artigo IPEN-doc 27160
    Structural and thermal behavior of 45S5 Bioglass®-based compositions containing alumina and strontium
    2020 - ARAUJO, MARIANA S.; SILVA, ANTONIO C.; BARTOLOMÉ, JOSÉ F.; MELLO-CASTANHO, SONIA
    The present research exposes the influence of 2 mol% of Al2O3 and 2 mol% SrO in 45S5 Bioglass®-based compositions. Four compositions were produced to elucidate the difference in how both oxides influence structure and thermal behavior separately and their synergy when together. Thermal properties, crystallization tendency, and sintering behavior was evaluated by differential scanning calorimetry, hot stage microscopy, and dilatometry. Changes of medium-range structures were characterized by Qn distribution of Raman spectroscopy and evaluation of 31P, 27Al, 23Na, and 29Si environment obtained by magic angle spinning nuclear magnetic resonance. Despite Qn distribution was predominantly Q2 in all samples, the composition criteria used enabled improved processing and stabilibity characteristics. The addition of Al2O3 and SrO promoted larger sinterability parameter (Sc) which indicates better sintering behavior, the glass stability against crystallization doubled (KH) compared to 45S5 and the processing window enlarged from 106 to 171.
  • Resumo IPEN-doc 25872
    Editorial
    2019 - MELLO-CASTANHO, SONIA R.H.; MORENO, RODRIGO
  • Artigo IPEN-doc 25843
    Use of waste water glass as silica supplier in synthesis of pure and Mg-doped lanthanum silicate powders for IT-SOFC application
    2019 - YAMAGATA, C.; LEME, D.R.; CASTANHO, S.R.H.M.
    Water glass in alkali solution (Na2SiO3/NaOH) an abundant effluent, generated in the alkaline fusion of zircon sand, represents a potential silica source to be converted in useful silica technological application. Actually, the generation of energy by environmental-friendly method is one of the major challenges for researchers. Solid Oxide Fuel Cells (SOFC) is efficient and environmentally clean technique to energy production, since it converts chemical energy into electrical power, directly. Apatite-type lanthanum silicates are promising materials for application as an electrolyte in intermediate temperature SOFC (IT-SOFC) because of their higher ionic conductivity, in temperatures of range 600–700 °C, than conventional zirconia electrolytes. In this work, pure (La9,56(SiO4)6O2,34) and Mg-doped (La9,8Si5,7Mg0,3O26,4) lanthanum silicate were synthesized, from that rich effluent. Using the sol-gel followed by precipitation method, the single crystalline apatite phase of both silicates was obtained by thermal treatment at 900 °C of their precursors. Sintered ceramic samples reached density of higher than 90%.
  • Artigo IPEN-doc 25792
    Micrograded ceramic-metal composites
    2019 - RESTIVO, THOMAZ A.G.; BECCARI, RAFAEL F.; PADILHA, WELLINGTON R.; DURAZZO, MICHELANGELO; TELLES, VICTOR B.; COLETI, JORGE; YAMAGATA, CHIEKO; SILVA, ANTONIO C. da; SUZUKI, EDUARDO; TENORIO, JORGE A.S.; MELLO-CASTANHO, SONIA R.H.
    The article shows new designed cermets and processes concerning primary to applications as thermal insulation materials with low emissivity. A new projected microstructure was obtained where dense regions (micropellets) rest inside the main porous pellet. The feature resembles a frozen hypercube, therefore such architecture is called hyper-pellet/ cermet. The processing method to obtain the hyper-cermet is based on sequential tape castings and sintering techniques. Ni-zirconia lamellae were prepared by a special mechanochemical process followed by sintering, which remain inside the main pellets as a dense region. The whole pellet is turned to be porous by employing pore-forming additives. All the constituents and porosity shapes are aligned along the disc/ flake planes. Thermal conductivity is estimated for the materials up to 800 °C by a flash diffusivimeter. Ceramographic analyses show graded density regions with directional constituents and pores. Applications of such materials are foreseen as temperature insulation materials and thermal radiation shields.
  • Artigo IPEN-doc 21770
    Glass ceramic sealants belonging to BAS (BaO-Alsub(2)Osub(3)-SiOsub(2) ternary system modified with Bsub(2)Osub(3) addition
    2016 - SILVA, MAVIAEL J. da; BARTOLOME, JOSE F.; AZA, ANTONIO H. de; MELLO CASTANHO, SONIA
    Four compositions in the BaO–Al2O3–SiO2 system modified with B2O3 were investigated with regard to their use as glassy seals in anode supported SOFC or iT-SOFC. The glassy system studied contains varying percentages of SiO2, Al2O3, B2O3, and high content of BaO as modifier (67–74%-wt). Their glass transition (Tg) and maximum densification point lies between 630 and 680 ◦C, and 734 ◦C to 828 ◦C, respectively. The viscosities of the four glasses are situated between 107 to 109.5 Pa.s, in the sealing range (730–830 ◦C). Heat treatment at 850 ◦C, revealed crystalline phases identified as BaAl2Si2O8 (hexacelsian) and BaSiO3. The thermal expansion coefficient (TEC) of the obtained glasses (8.8–10.5 ppm/K) was comparable to zirconia (YSZ) electrolyte, and shows chemical compatibility and high characteristic bond strength (up to 33 ± 7 MPa). The compositions with higher BaO contentin the system studied seem to be good candidates for iT-SOFC sealant application.
  • Artigo IPEN-doc 21769
    Bio-prototyping and thermoluminescence response of cellular rare earth ceramics
    2016 - SANTOS, S.C.; YAMAGATA, C.; CAMPOS, L.L.; MELLO CASTANHO, S.R.H.
    The use of renewable materials is essential toward green economy. Vegetable structures are abundant, exhibit complex hierarchically built shape and an architecture that is promising to form functional materials. In this work using a mixture of rare earth oxides, which contain around 57 wt% yttrium oxide, cellular ceramics by bio-prototyping from the vegetable sponge Luffa cylindrica were produced and the thermoluminescence response was evaluated. By colloidal processing aqueous suspensions with 25 vol% solids content, pH 10, 1 wt% deffloculant and 0.2 wt% binder exhibited shear thinning behavior and apparent viscosity suitable for replica method. By thermal treatment at 1600 ◦C for 2 h in air biomorphic rare earth ceramics with dense microstructure and reticulated architecture were produced.
  • Artigo IPEN-doc 16317
    Nickel-Zirconia cermet processing by mechanical alloying for solid oxide fuel cell anodes
    2008 - RESTIVO, THOMAZ A.G.; MELLO CASTANHO, SONIA R.H. de