SONIA REGINA HOMEM DE MELLO CASTANHO

Resumo

Graduada em Engenharia de Materiais (UFSCar, Universidade Federal de São Carlos), Mestre em Tecnologia Nuclear (IPEN/USP, Universidade de São Paulo) e Doutora em Ciências Químicas-Cerâmicos (UAM/ES -ICV/CSIC, Universidad Autónoma de Madrid, Espanha e Instituto de Ceramica y Vidrio/CSIC de Espanha). Ela é Pesquisadora Senior e atualmente Gestora Adjunta em Pesquisa e Desenvolvimento do Centro de Ciências e Tecnologia de Materiais (CCTM) do Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP). É Professora da Universidade de São Paulo (USP), no programa de posgraduação Tecnologia Nuclear - Materiais. Coordenadora do grupo de pesquisas (GP/CNPq) em Materiais e Meio Ambiente. Principais áreas de atuação: - Energias Renováveis (células a combustível, catalizadores e biomassa), - Ambiental (mitigação, inertização e requalificação de efluentes e subprodutos de processos extrativistas e industriais, diretivas ambientais (RhOS, WEEE)), - Cerâmicas Biocompatíveis (vidros, compósitos multifuncionais para a implantologia). Experiência em gestão de Centro de Pesquisas, gestão ambiental, gestão de projetos, planejamento composicional de materiais, processamento coloidal, reologia, vidros e vitroceramicos, compósitos multifuncionais e nanoestruturas naturais. (Texto extraído do Currículo Lattes em 27 dez. 2021)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 16
  • Resumo IPEN-doc 25872
    Editorial
    2019 - MELLO-CASTANHO, SONIA R.H.; MORENO, RODRIGO
  • Artigo IPEN-doc 25843
    Use of waste water glass as silica supplier in synthesis of pure and Mg-doped lanthanum silicate powders for IT-SOFC application
    2019 - YAMAGATA, C.; LEME, D.R.; CASTANHO, S.R.H.M.
    Water glass in alkali solution (Na2SiO3/NaOH) an abundant effluent, generated in the alkaline fusion of zircon sand, represents a potential silica source to be converted in useful silica technological application. Actually, the generation of energy by environmental-friendly method is one of the major challenges for researchers. Solid Oxide Fuel Cells (SOFC) is efficient and environmentally clean technique to energy production, since it converts chemical energy into electrical power, directly. Apatite-type lanthanum silicates are promising materials for application as an electrolyte in intermediate temperature SOFC (IT-SOFC) because of their higher ionic conductivity, in temperatures of range 600–700 °C, than conventional zirconia electrolytes. In this work, pure (La9,56(SiO4)6O2,34) and Mg-doped (La9,8Si5,7Mg0,3O26,4) lanthanum silicate were synthesized, from that rich effluent. Using the sol-gel followed by precipitation method, the single crystalline apatite phase of both silicates was obtained by thermal treatment at 900 °C of their precursors. Sintered ceramic samples reached density of higher than 90%.
  • Artigo IPEN-doc 25792
    Micrograded ceramic-metal composites
    2019 - RESTIVO, THOMAZ A.G.; BECCARI, RAFAEL F.; PADILHA, WELLINGTON R.; DURAZZO, MICHELANGELO; TELLES, VICTOR B.; COLETI, JORGE; YAMAGATA, CHIEKO; SILVA, ANTONIO C. da; SUZUKI, EDUARDO; TENORIO, JORGE A.S.; MELLO-CASTANHO, SONIA R.H.
    The article shows new designed cermets and processes concerning primary to applications as thermal insulation materials with low emissivity. A new projected microstructure was obtained where dense regions (micropellets) rest inside the main porous pellet. The feature resembles a frozen hypercube, therefore such architecture is called hyper-pellet/ cermet. The processing method to obtain the hyper-cermet is based on sequential tape castings and sintering techniques. Ni-zirconia lamellae were prepared by a special mechanochemical process followed by sintering, which remain inside the main pellets as a dense region. The whole pellet is turned to be porous by employing pore-forming additives. All the constituents and porosity shapes are aligned along the disc/ flake planes. Thermal conductivity is estimated for the materials up to 800 °C by a flash diffusivimeter. Ceramographic analyses show graded density regions with directional constituents and pores. Applications of such materials are foreseen as temperature insulation materials and thermal radiation shields.
  • Artigo IPEN-doc 22634
    High chemical stability of stoneware tiles containing waste metals
    2010 - REINOSA, J.J.; SILVA, A.C.; RUBIO-MARCOS, F.; MELLO CASTANHO, S.R.H.; MOYA, J.S.; FERNANDEZ, J.F.
    Stoneware tiles were produced by the incorporation of galvanic waste to industrial compositions that were processed from kaolinitic clay, feldspar, quartz and recycled domestic glass. The galvanic waste required a calcination step to eliminate the gas forming species prior to its incorporation into industrial processes and crystalline phases were formed. After that, the effective incorporation of metals from the galvanic waste was attained through the formation and the refinement of crystalline phases that acted as pigments. During the fast firing the calcined galvanic waste only got partially dissolved in the liquid phase that developed in spinel phase nanocrystals. The followed procedure allowed to effective immobilization of up to 10 wt% of waste with heavy metals in a porcelain stoneware that satisfy both the mechanical and the chemical standards required to massively commercialize such a product
  • Artigo IPEN-doc 21770
    Glass ceramic sealants belonging to BAS (BaO-Alsub(2)Osub(3)-SiOsub(2) ternary system modified with Bsub(2)Osub(3) addition
    2016 - SILVA, MAVIAEL J. da; BARTOLOME, JOSE F.; AZA, ANTONIO H. de; MELLO CASTANHO, SONIA
    Four compositions in the BaO–Al2O3–SiO2 system modified with B2O3 were investigated with regard to their use as glassy seals in anode supported SOFC or iT-SOFC. The glassy system studied contains varying percentages of SiO2, Al2O3, B2O3, and high content of BaO as modifier (67–74%-wt). Their glass transition (Tg) and maximum densification point lies between 630 and 680 ◦C, and 734 ◦C to 828 ◦C, respectively. The viscosities of the four glasses are situated between 107 to 109.5 Pa.s, in the sealing range (730–830 ◦C). Heat treatment at 850 ◦C, revealed crystalline phases identified as BaAl2Si2O8 (hexacelsian) and BaSiO3. The thermal expansion coefficient (TEC) of the obtained glasses (8.8–10.5 ppm/K) was comparable to zirconia (YSZ) electrolyte, and shows chemical compatibility and high characteristic bond strength (up to 33 ± 7 MPa). The compositions with higher BaO contentin the system studied seem to be good candidates for iT-SOFC sealant application.
  • Artigo IPEN-doc 21769
    Bio-prototyping and thermoluminescence response of cellular rare earth ceramics
    2016 - SANTOS, S.C.; YAMAGATA, C.; CAMPOS, L.L.; MELLO CASTANHO, S.R.H.
    The use of renewable materials is essential toward green economy. Vegetable structures are abundant, exhibit complex hierarchically built shape and an architecture that is promising to form functional materials. In this work using a mixture of rare earth oxides, which contain around 57 wt% yttrium oxide, cellular ceramics by bio-prototyping from the vegetable sponge Luffa cylindrica were produced and the thermoluminescence response was evaluated. By colloidal processing aqueous suspensions with 25 vol% solids content, pH 10, 1 wt% deffloculant and 0.2 wt% binder exhibited shear thinning behavior and apparent viscosity suitable for replica method. By thermal treatment at 1600 ◦C for 2 h in air biomorphic rare earth ceramics with dense microstructure and reticulated architecture were produced.
  • Artigo IPEN-doc 20089
    Yttria nettings by colloidal processing
    2014 - SANTOS, S.C.; ACCHAR, W.; YAMAGATA, C.; MELLO CASTANHO, S.
  • Artigo IPEN-doc 07567
    Formation of nanocrystalline yttrium disilicate powder by an oxalate gel method
    1998 - MOYA, J.S.; DIAZ, M.; SERNA, C.J.; CASTANHO, S.R.H.M.
  • Artigo IPEN-doc 07568
  • Artigo IPEN-doc 07327
    Colloidal filtration of silicon nitride aqueous slips, part II: slip casting and pressure casting performance
    1999 - MORENO, R.; SALOMONI, A.; STAMENKOVIC, I.; CASTANHO, S.R.H.M.