SONIA REGINA HOMEM DE MELLO CASTANHO

Resumo

Graduada em Engenharia de Materiais (UFSCar, Universidade Federal de São Carlos), Mestre em Tecnologia Nuclear (IPEN/USP, Universidade de São Paulo) e Doutora em Ciências Químicas-Cerâmicos (UAM/ES -ICV/CSIC, Universidad Autónoma de Madrid, Espanha e Instituto de Ceramica y Vidrio/CSIC de Espanha). Ela é Pesquisadora Senior e atualmente Gestora Adjunta em Pesquisa e Desenvolvimento do Centro de Ciências e Tecnologia de Materiais (CCTM) do Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP). É Professora da Universidade de São Paulo (USP), no programa de posgraduação Tecnologia Nuclear - Materiais. Coordenadora do grupo de pesquisas (GP/CNPq) em Materiais e Meio Ambiente. Principais áreas de atuação: - Energias Renováveis (células a combustível, catalizadores e biomassa), - Ambiental (mitigação, inertização e requalificação de efluentes e subprodutos de processos extrativistas e industriais, diretivas ambientais (RhOS, WEEE)), - Cerâmicas Biocompatíveis (vidros, compósitos multifuncionais para a implantologia). Experiência em gestão de Centro de Pesquisas, gestão ambiental, gestão de projetos, planejamento composicional de materiais, processamento coloidal, reologia, vidros e vitroceramicos, compósitos multifuncionais e nanoestruturas naturais. (Texto extraído do Currículo Lattes em 27 dez. 2021)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • Artigo IPEN-doc 27172
    Tribological and mechanical behaviour of 45S5 Bioglass®-based compositions containing alumina and strontium
    2020 - ARAUJO, M.S.; BARTOLOMÉ, J.F.; MELLO-CASTANHO, S.
    Although bioactive glasses have been widely used for the surfaces of orthopaedic and dental implants, its limited mechanical strength, low toughness and wear resistance have prevented their use as load-bearing devices. Considering that even a small variation in the composition of such materials can deeply modify their features, inducing very different physicochemical or mechanical properties, the present research was conducted by modifying the glass network of 45S5 Bioglass® by adding Al2O3 and SrO to obtain a highly bioactive glass with improved mechanical and tribological performance for biomedical applications. The addition of 2% Al2O3 and 2% SrO produced a dense material with the same elastic modulus as 45S5 (~50 GPa). Moreover, the bending strength increased by 60% and the toughness doubled. The wear rate obtained against steel was found to be three times lower than that of 45S5. From the results, it can be assumed that both alumina and strontium synergistically play crucial roles in the mechanical and tribological properties of these new bioactive glasses.
  • Artigo IPEN-doc 27160
    Structural and thermal behavior of 45S5 Bioglass®-based compositions containing alumina and strontium
    2020 - ARAUJO, MARIANA S.; SILVA, ANTONIO C.; BARTOLOMÉ, JOSÉ F.; MELLO-CASTANHO, SONIA
    The present research exposes the influence of 2 mol% of Al2O3 and 2 mol% SrO in 45S5 Bioglass®-based compositions. Four compositions were produced to elucidate the difference in how both oxides influence structure and thermal behavior separately and their synergy when together. Thermal properties, crystallization tendency, and sintering behavior was evaluated by differential scanning calorimetry, hot stage microscopy, and dilatometry. Changes of medium-range structures were characterized by Qn distribution of Raman spectroscopy and evaluation of 31P, 27Al, 23Na, and 29Si environment obtained by magic angle spinning nuclear magnetic resonance. Despite Qn distribution was predominantly Q2 in all samples, the composition criteria used enabled improved processing and stabilibity characteristics. The addition of Al2O3 and SrO promoted larger sinterability parameter (Sc) which indicates better sintering behavior, the glass stability against crystallization doubled (KH) compared to 45S5 and the processing window enlarged from 106 to 171.
  • Artigo IPEN-doc 26295
    Niobium modified glass for nuclear waste immobilization
    2019 - SILVA, D.L.C. e; SILVA, A.C.; RAMBO, C.R.; CASTANHO, S.
    The impact of Nb2O5 addition to glasses belonging to the system SiO2-Na2O-CaO-B2O5-Al2O3 were investigated for nuclear waste immobilization applications. The glass samples, produced by the traditional melting method, were characterized by XRD, Differential Thermal Analysis (DTA) and Fourier-Transform Infrared Spectroscopy (FT-IR). The XRD results confirmed the amorphous state of the glasses and the thermal and FT-IR analyses revealed that Nb2O5 was dispersedly incorporated to the glass structure and that higher contents of the oxide result in a niobate network growth. The glasses showed good resistance to devitrification and are applicable for nuclear waste vitrification processes. These results show that the process is a promising alternative to produce a new family of glasses with optimized thermal resistance for the immobilization of nuclear wastes.