VICTORIA AMATHEUS MAIA
2 resultados
Resultados de Busca
Agora exibindo 1 - 2 de 2
Artigo IPEN-doc 30416 Innovative lead-carbon battery utilizing electrode-electrolyte assembly inspired by PEM-FC architecture2024 - SOUZA, RODRIGO F.B. de; SILVESTRIN, GABRIEL A.; CONCEICAO, FELIPE G. da; MAIA, VICTORIA A.; OTUBO, LARISSA; NETO, ALMIR O.; SOARES, EDSON P.This study explores the innovative integration of a lead‑carbon battery with an electrode-electrolyte assembly inspired by Proton Exchange Membrane Fuel Cell (PEM-FC) architecture. The lead‑carbon material, synthesized with a 40 % mass ratio using the Flash Joule Heating Method, exhibits predominant Pb0 and PbO phases, as observed in lattice parameter fringes, with additional detection of the PbO2 phase. The resulting Carbon-Lead Acid Battery (CLAB) demonstrates a specific capacity of 11.2 mAh g−1. The incorporation of carbon enhances nanoparticle stability, yielding a highly stable battery performance over 100 cycles, with discharge potential variations of <2 %. This innovative CLAB assembly not only showcases stable performance and also introduces the potential for constructing flexible lead batteries, expanding technological applications. The study provides comprehensive insights into the synthesis, performance, and prospects of this novel lead‑carbon battery architecture, emphasizing its significance in the realm of energy storage solutions.Artigo IPEN-doc 28132 Facile, clean and rapid exfoliation of boron-nitride using a non-thermal plasma process2021 - SOUZA, RODRIGO F.B. de; MAIA, VICTORIA A.; ZAMBIAZZI, PRISCILLA J.; OTUBO, LARISSA; LAZAR, DOLORES R.R.; NETO, ALMIR O.Non-Thermal Plasma source was used in this work to exfoliated boron-nitride (BN) powders. The generation of hexagonal BN nanosheets (h-BNNSs) few-layered was observed by TEM. The hBN exfoliation occurred along their transverse axis, preserving the hexagonal structure. The micrographs showed ordered lattice fringes with d-spacing of approximately 0.33 nm indicating the increase of (0 0 2) h-BNNSs crystal lattice planes, also confirmed by the relative peak intensity decrease in relation to the other peaks in XRD measures. The few amounts of layers were confirmed by intensity decrease, enlargement, and blue shift of E2 g vibrational mode in Raman spectra. Moreover, the appearance of the FTIR band corresponding to the hydroxyl group occurs due to large amounts of defects such as vacancy defects.