VICTORIA AMATHEUS MAIA
2 resultados
Resultados de Busca
Agora exibindo 1 - 2 de 2
Artigo IPEN-doc 30416 Innovative lead-carbon battery utilizing electrode-electrolyte assembly inspired by PEM-FC architecture2024 - SOUZA, RODRIGO F.B. de; SILVESTRIN, GABRIEL A.; CONCEICAO, FELIPE G. da; MAIA, VICTORIA A.; OTUBO, LARISSA; NETO, ALMIR O.; SOARES, EDSON P.This study explores the innovative integration of a lead‑carbon battery with an electrode-electrolyte assembly inspired by Proton Exchange Membrane Fuel Cell (PEM-FC) architecture. The lead‑carbon material, synthesized with a 40 % mass ratio using the Flash Joule Heating Method, exhibits predominant Pb0 and PbO phases, as observed in lattice parameter fringes, with additional detection of the PbO2 phase. The resulting Carbon-Lead Acid Battery (CLAB) demonstrates a specific capacity of 11.2 mAh g−1. The incorporation of carbon enhances nanoparticle stability, yielding a highly stable battery performance over 100 cycles, with discharge potential variations of <2 %. This innovative CLAB assembly not only showcases stable performance and also introduces the potential for constructing flexible lead batteries, expanding technological applications. The study provides comprehensive insights into the synthesis, performance, and prospects of this novel lead‑carbon battery architecture, emphasizing its significance in the realm of energy storage solutions.Artigo IPEN-doc 29694 Effective phosphate removal from water by electrochemically mediated precipitation with coffee grounds biocarbon obtained by non-thermal plasma method2023 - SILVESTRIN, G.A.; GONCALVES, M.H.; GODOI, C.M.; MAIA, V.A.; FERREIRA, J.C.; GUILHEN, S.N.; NETO, A.O.; SOUZA, R.F.B. deThis study investigates the use of biocarbon electrodes, produced from coffee grounds through plasma pyrolysis, in the electrochemically mediated precipitation process for phosphorus removal in a flow reactor. The structural and electrochemical properties of biocarbon were analyzed using X-ray powder diffraction (XRD), Raman spectroscopy, and cyclic voltammetry. The results show that biocarbon consists of both graphene oxide and lignocellulose with surface OH groups that facilitate the breakdown of water, a key step in the electrochemically mediated precipitation process for phosphorus removal. The addition of graphite to the biocarbon paste was found to be necessary to obtain a response from the biocarbon in cyclic voltammetry. The Gr75BC25 electrode achieved higher phosphorus removal rates than other tested electrodes, particularly at low flows, due to the functional groups present in biocarbon enhancing the breakdown of water. However, electrodes with a greater amount of biocarbon exhibit lower rates of phosphorus removal and higher consumption of electrical power, which can be attributed to their higher electrical resistivity. Thus, to optimize its use, it is important to balance the benefits of increased phosphorus removal rates with the trade-off of increased energy consumption and decreased phosphorus removal at higher levels of biocarbon. The results suggest that biocarbon produced from coffee grounds by plasma pyrolysis has the potential to be used as an effective electrode material for electrochemically mediated precipitation processes.