VICTORIA AMATHEUS MAIA
4 resultados
Resultados de Busca
Agora exibindo 1 - 4 de 4
Artigo IPEN-doc 30430 Optimizing PtSn composition in direct sugarcane extract fuel cells2024 - VILLARDI, BRUNO D.Q.; MAIA, VICTORIA A.; NANDENHA, JULIO; ZAMBIAZI, PRISCILLA J.; SOUZA, RODRIGO F.B. de; NETO, ALMIR O.Pt90Sn10/C composition exhibited a strong maximum power density value and a good sugar oxidation response in sugar extract solution in comparison with others electrocatalysts prepared. Pt90Sn10/C demonstrated a maximum power density approximately 93% higher than that of Pt80Sn20/C, which is the second most active material and more than 8 times bigger than Pt/C. The primary difference between the two lies in glucose consumption, which is approximately 90% higher in Pt90Sn10/C. It is important to highlight that in the more active materials; fructose consumption remains relatively constant, ranging between 7 and 8%. The enhanced performance could be attributed to both the altered electronic properties resulting from tin integration into the platinum crystal lattice and the activation of water at less positive potentials by a bifunctional mechanism. XRD results showed that the lattice parameters were expanded indicating the insertion of Sn to Pt, while that cyclic voltammetry showed that all materials present the hydrogen adsorption–desorption region over Pt (− 0.2 to 0.15 V); however, when increasing the tin content in the catalyst, the region decreases the definition and is associated with the presence of transition metals such as Sn. TEM images and histograms for PtSn showed the increase in the average particle size accompanying the tin enrichment in the composition; this effect could be tin oxide in material surface and is in agreement with other works.Artigo IPEN-doc 29605 Conversion of nitrogen to ammonia using a Cu/C electrocatalyst in a polymeric electrolyte reactor2023 - MAIA, VICTORIA A.; SANTOS, CAMILA M.G.; AZEREDO, NATHALIA F.B.; ZAMBIAZI, PRISCILLA J.; ANTOLINI, ERMETE; NETO, ALMIR O.; SOUZA, RODRIGO F.B. deThe electrochemical conversion of N2 to NH3 using a polymeric electrolyte reactor is a promising method to accelerate the green production of hydrogen carriers. On this basis, we report the efficiency of ammonia production by the nitrogen reduction reaction using a Cu/C catalyst in a polymeric electrolyte membrane reactor. The Cu/C catalyst was prepared by the NaBH4 reduction method and characterized by X-ray diffraction, transmission electron microscopy, cyclic voltammetry, and conversion experiments performed in a polymer electrolyte membrane fuel cell type reactor. The X-ray diffraction results showed the presence of CuO2 and carbon phases, while the TEM images showed a high agglomeration of copper nanoparticles on carbon. The onset potential of nitrogen reduction was near to the Cu (I) to Cu0 reduction peak. Mass spectroscopy was used to observe the production of N2H2 and NH3 and the consumption of N2. Maximum ammonia production was detected at 0.0 V with a NH3 yield rate of 38.4 µg h−1 cm−2 and a faradaic efficiency of 42.57 %.Artigo IPEN-doc 28867 PtSb/C electrocatalysts for glycerol oxidation in alkaline electrolyte2022 - PEREIRA, C.V.; MAIA, V.A.; ZAMBIAZI, P.J.; SOUZA, R.F.B. de; ANTOLINI, E.; NETO, A.O.Pt/C and PtSb/C catalysts in various atomic ratios were synthesized by the sodium borohydride reducing method and their activity for the glycerol oxidation reaction (GOR) was evaluated in alkaline media. Transmission Electron Microscopy (TEM) images showed that Pt particle size increases with increasing Sb content in the catalyst. X-ray photoelectron spectroscopy (XPS) showed that the ratio of Pt and Sb is close to that expected. By XPS measurements, the presence of Sb2O5 in Pt70Sb30/C and Pt50Sb50/C was observed. X-ray diffraction (XRD) analysis revealed the presence of the face-centered cubic (FCC) structure of Pt and PtSb and of some others phases that could be identified as Sb oxides. By linear sweep voltammetry (LSV) measurements, Pt80Sb20/C showed the highest activity for the GOR in alkaline media for potentials >−0.35 V vs. Ag/AgCl, while Pt50Sb50/C showed the highest GOR activity in the potential range between −0.60 and −0.35 V vs. Ag/AgCl. The direct glycerol fuel cells with Pt80Sb20/C as the anode catalyst showed the best performance. These results attest the beneficial effect of Sb addition to platinum: the activity enhancement in the presence of Sb atoms has to be ascribed to both a bifunctional mechanism related to the presence of Sb oxides, and an electronic effect between platinum and antimony in the PtSb alloy.Artigo IPEN-doc 28132 Facile, clean and rapid exfoliation of boron-nitride using a non-thermal plasma process2021 - SOUZA, RODRIGO F.B. de; MAIA, VICTORIA A.; ZAMBIAZZI, PRISCILLA J.; OTUBO, LARISSA; LAZAR, DOLORES R.R.; NETO, ALMIR O.Non-Thermal Plasma source was used in this work to exfoliated boron-nitride (BN) powders. The generation of hexagonal BN nanosheets (h-BNNSs) few-layered was observed by TEM. The hBN exfoliation occurred along their transverse axis, preserving the hexagonal structure. The micrographs showed ordered lattice fringes with d-spacing of approximately 0.33 nm indicating the increase of (0 0 2) h-BNNSs crystal lattice planes, also confirmed by the relative peak intensity decrease in relation to the other peaks in XRD measures. The few amounts of layers were confirmed by intensity decrease, enlargement, and blue shift of E2 g vibrational mode in Raman spectra. Moreover, the appearance of the FTIR band corresponding to the hydroxyl group occurs due to large amounts of defects such as vacancy defects.