VICTORIA AMATHEUS MAIA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 30416
    Innovative lead-carbon battery utilizing electrode-electrolyte assembly inspired by PEM-FC architecture
    2024 - SOUZA, RODRIGO F.B. de; SILVESTRIN, GABRIEL A.; CONCEICAO, FELIPE G. da; MAIA, VICTORIA A.; OTUBO, LARISSA; NETO, ALMIR O.; SOARES, EDSON P.
    This study explores the innovative integration of a lead‑carbon battery with an electrode-electrolyte assembly inspired by Proton Exchange Membrane Fuel Cell (PEM-FC) architecture. The lead‑carbon material, synthesized with a 40 % mass ratio using the Flash Joule Heating Method, exhibits predominant Pb0 and PbO phases, as observed in lattice parameter fringes, with additional detection of the PbO2 phase. The resulting Carbon-Lead Acid Battery (CLAB) demonstrates a specific capacity of 11.2 mAh g−1. The incorporation of carbon enhances nanoparticle stability, yielding a highly stable battery performance over 100 cycles, with discharge potential variations of <2 %. This innovative CLAB assembly not only showcases stable performance and also introduces the potential for constructing flexible lead batteries, expanding technological applications. The study provides comprehensive insights into the synthesis, performance, and prospects of this novel lead‑carbon battery architecture, emphasizing its significance in the realm of energy storage solutions.
  • Artigo IPEN-doc 29912
    Methane to methanol conversion using proton-exchange membrane fuel cells and PdAu/antimony-doped tin oxide nanomaterials
    2023 - MAIA, VICTORIA A.; NANDENHA, JULIO; GONCALVES, MARLON H.; SOUZA, RODRIGO F.B. de; O.NETO, ALMIR
    This study investigates the use of Au-doped Pd anodic electrocatalysts on ATO support for the conversion of methane to methanol. The study uses cyclic voltammetry, in situ Raman spectra, polarization curves, and FTIR analysis to determine the optimal composition of gold and palladium for enhancing the conversion process. The results demonstrate the potential for utilizing methane as a feedstock for producing sustainable energy sources. The Pd75Au25/ATO electrode exhibited the highest OCP value, and Pd50Au50/ATO had the highest methanol production value at a potential of 0.05 V. Therefore, it can be concluded that an optimal composition of gold and palladium exists to enhance the conversion of methane to methanol. The findings contribute to the development of efficient and sustainable energy sources, highlighting the importance of exploring alternative ways to produce methanol.