ANASTASIA BURIMOVA
2 resultados
Resultados de Busca
Agora exibindo 1 - 2 de 2
Artigo IPEN-doc 30205 Cobalt doping effects in zinc oxide2024 - PEREIRA, LUCIANO F.D.; FERREIRA, WANDERSON L.; CORREA, BRUNO S.; COSTA, MESSIAS S.; COSTA, CLEIDILANE S.; FILHO, ARNALDO A.M.; SALES, TATIANE S.N.; BOSCH-SANTOS, BRIANNA; SCHELL, JULIANA; BURIMOVA, ANASTASIA; SAXENA, RAJENDRA N.; CABRERA-PASCA, GABRIEL A.; CARBONARI, ARTUR W.In this paper, we investigate the solubility effects of Co in ZnO (Zn1−xCoxO, where x = 0, 0.03, 0.05, 0.1, 0.2, 0.25, 0.4, 0.8, and 1) by combining the results of perturbed angular correlation (PAC) spectroscopy using highly diluted 111Cd as probe nuclei and ab initio calculations based on spin-density functional theory (SDFT). This combined approach enables us to characterize the local structure around Cd ions, where, through PAC technique, it was possible to measure the EFG as a function of temperature and Co concentration and thereby monitor the changes in the structure and the Co solubility threshold in ZnO and the ZnO/CoO/Co3O4 mixed phase. The full-potential linear augmented plane wave plus local orbital (APW+lo) formalism were used here to describe the electronic structure of the supercells, including the atomic relaxations. These Ab initio calculations show an interesting behavior of the Cd and Co impurity levels in the band structure of ZnO, which explains the experimental results in terms of the origin of EFG and the evidence of ferromagnetic response.Artigo IPEN-doc 25614 Low temperature synthesis of pure and Fe-doped HfSiO4: Determination of Si and Fe fractions by neutron activation analysis2019 - SALES, T.N.S.; BOSCH-SANTOS, B.; SAIKI, M.; BURIMOVA, A.; PEREIRA, L.F.D.; SAXENA, R.N.; CARBONARI, A.W.A new method of synthesis of hafnium silicate HfSiO4 (also known as hafnon) is reported. We observed a selfcontrolled incorporation of SiO2 from the quartz tube in which a sample of hafnium oxide nanoparticles was heated. This approach was then adapted to Fe-doped hafnon production. Sample structure, morphology and composition were characterized by X-ray diffraction, electron microscopy and neutron activation analysis. Diffraction data has shown that lattice parameters of doped HfSiO4 thus obtained are very close to those previously known for bare hafnon. The hafnon-like phase stabilized at T=900 °C which is about 500 °C lower than the corresponding transition of bare bulk hafnium silicate. The fractions of Si and Fe in the composite matrices were determined with neutron activation analysis. These results completed by X-ray diffraction data allowed to assume that (i) Fe initially substituted Hf in the HfO2 lattice; (ii) there was no migration of iron atoms from Hf to Si sites at the formation of hafnon-like phase; (iii) doped and undoped hafnium oxide has taken as much Si from the quartz as was needed for the arrangement of Fe1-xHfxSiO4 tetragonal system, 0≤x<0.2. Our results are consistent with those obtained for similar materials, such as metal (Fe,V) doped zircon, where the dopant also demonstrated catalytic effect on phase stabilization.