PEDRO ARTHUR AUGUSTO DE CASTRO

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Resumo IPEN-doc 29573
    FTIR imaging on glass substrates evaluation of histological skin burn injuries specimens treated by femtosecond laser pulses
    2022 - ZEZELL, DENISE; CASTRO, PEDRO; DEL-VALLE, MATHEUS; CAMILLO-SILVA, CARLOS; SAMAD, RICARDO; DE ROSSI, WAGNER; SANTOS, MOISES
    Burn injuries continue to be one of the leading causes of unintentional death and injury in low- and middle-income countries [1]. Burns are considered an important public health problem, because in addition to physical problems that can lead the patient to death, they cause psychological and social damage. An estimated 180,000 deaths every year are caused by burns [2]. The use of infrared (IR) spectroscopy for studying biological specimens is nowadays a wide and active area of research. The IR microspectroscopy has proved to be an ideal tool for investigating the biochemical composition of biological samples at the microscopic scale, as well as its fast, sensitive, and label-free nature [3]. IR image spectral histopathology has shown great promise as an important diagnostic tool, with the potential to complement current pathological methods, reducing subjectivity in biopsy samples analysis. However, the use of IR transmissive substrates which are both fragile and prohibitively very expensive, hinder the clinical translation. The goal of this study is to evaluate the potential of discriminating healing process, in burned skin specimens treated with ultrashort pulses laser 3 days after the burn. This study is considering a previous paper [4], in which it analyzed only micro-ATR-FTIR spectra of a frozen sample point. The specimens were obtained from third degree burn wound. The wounds treatment were performed three days after the burn, and the animals were sacrificed 3 and 14 days post-treatment. Using coverslipped H&E stained tissue on glass from previous histopathological analysis and applying the analytical techniques PCA and K-means on N−H, O−H, and C−H stretching regions occurring at 2500−3800 cm−1 (high wavenumber region), were possible to discriminate burned epidermal and dermal regions from irradiated in same regions on sample. In the figures is shown the average spectrum at (a) day 3 and (b) day 14. , in both there were increase of burned+laser treated bands. The great potential of this study was to analyse coverslipped H&E stained tissue on glass, without compromising the histopathologist practices and contribute for clinical translation.
  • Artigo IPEN-doc 22896
    Multimodal evaluation of ultra-short laser pulses treatment for skin burn injuries
    2017 - SANTOS, MOISES O. dos; LATRIVE, ANNE; CASTRO, PEDRO A.A. de; ROSSI, WAGNER de; ZORN, TELMA M.T.; SAMAD, RICARDO E.; FREITAS, ANDERSON Z.; CESAR, CARLOS L.; VIEIRA JUNIOR, NILSON D.; ZEZELL, DENISE M.
    Thousands of people die every year from burn injuries. The aim of this study is to evaluate the feasibility of high intensity femtosecond lasers as an auxiliary treatment of skin burns. We used an in vivo animal model and monitored the healing process using 4 different imaging modalities: histology, Optical Coherence Tomography (OCT), Second Harmonic Generation (SHG), and Fourier Transform Infrared (FTIR) spectroscopy. 3 dorsal areas of 20 anesthetized Wistar rats were burned by water vapor exposure and subsequently treated either by classical surgical debridement, by laser ablation, or left without treatment. Skin burn tissues were noninvasively characterized by OCT images and biopsied for further histopathology analysis, SHG imaging and FTIR spectroscopy at 3, 5, 7 and 14 days after burn. The laser protocol was found as efficient as the classical treatment for promoting the healing process. The study concludes to the validation of femtosecond ultra-short pulses laser treatment for skinburns, with the advantage of minimizing operatory trauma.