MARCIO RUBENS XAVIER BARTOLOMEI
2 resultados
Resultados de Busca
Agora exibindo 1 - 2 de 2
Resumo IPEN-doc 27657 Graphene oxide nanosheets as fillers for thermoplastic-matrix nanocomposites2020 - MOURA, E.A.; SANTOS, B.S.; ISHIKAWA, O.; SANTANA, J.G.; BARTOLOMEI, M.R.; OLIVEIRA, R.R.Recent studies have shown that the synthesis of graphene oxide (GO) by chemical oxidation of graphite followed by its reduction is one's the most promising routes to prepare remarkable polymer/graphene nanocomposite materials with significant improvement of properties compared to the base polymer. The addition of a very small amount of reduced graphene oxide (RGO)in a polymer can enhance its properties, with respect to electrical conductivity, barrier resistance, stiffness, abrasion resistance, mechanical resistance, and fire retardancy. Numerous approaches have been established to prepare RGO from the desoxygenation of GO. This work presents the synthesis of graphene oxide by chemical oxidation of graphite followed by its photoreduction in aqueous dispersion using UV radiation and highlights some examples of RGO/thermoplastic-matrix nanocomposites prepared by melt processing. To evaluate the potential application of thermoplastic composites prepared, the RGO's content on the morphological, mechanical and thermal properties of the as-obtained nanocomposites has been assessed. In addition, GO/RGO nanosheets were characterized by ATR–FTIR, XRD, Raman, and FE-SEM. According to the results, it can be inferred that the addition of RGO leads to a remarkable improvement in the performance of thermoplastic-matrix nanocomposites and offers a competitive solution for various potential applications.Capítulo IPEN-doc 27628 Investigation on mechanical and thermal behaviours of PBAT/PLA blend reinforced with reduced graphene oxide nanosheets2020 - BARTOLOMEI, MARCIO R.X.; CARMO, KARINA H.S.; SANTOS, BIANCA S.; BARTOLOMEI, SUELLEN S.; OLIVEIRA, RENE R.; MOURA, ESPERIDIANA A.B.The aim of this study was to process and investigate the changes in the mechanical and morphological properties of the biodegradable nanocomposites based on polybutylene adipate-co-terephthalate (PBAT)/poly(lactic acid) (PLA) blend (PBAT/PLA blend) due to the incorporation of reduced graphene oxide (RGO) nanosheets. The biodegradable polymeric nanocomposites were prepared by melting extrusion process using a twin-screw extruder machine. The influence of the RGO nanosheets incorporation on mechanical and thermal properties of PBAT/PLA blend was investigated by tensile Thermogravimetric (TG), X-Ray diffraction (XRD), differential scanning calorimetry (DSC), and tensile test analysis. Results showed that incorporation of the small amount ofRGO(0.1wt.%) ofRGOnanosheets in the blend matrix of PBAT/PLA resulted in an important gain of mechanical properties of the blend. This result indicates that a very small amount of RGO nanosheets addition in the PBAT/PLA can lead to obtaining materials with superior properties suitable for several industrial applications.