SAJID FAROOQ
3 resultados
Resultados de Busca
Agora exibindo 1 - 3 de 3
Artigo IPEN-doc 30192 A 3D discriminant analysis for hyperspectral FTIR images2023 - FAROOQ, SAJID; GERMANO, GLEICE; STANCARI, KLEBER A.; RAFFAELI, ROCIO; CROCE, MARIA V.; CROCE, ADELA E.; ZEZELL, DENISE M.Here, we apply a 3D discriminant analysis approach to analyze FTIR hyperspectral images of normal vs malignant Melanoma (MM) samples for skin cancer diagnosis. For this porpose we used 2 samples, for Normal (49k) and for MM(90k). Our results evidence the outstanding performance with accuracy up to 81% for big data (> 100k).Artigo IPEN-doc 30188 Identification of basal cell carcinoma skin cancer using FTIR and Machine learning2023 - PERES, DANIELLA L.; FAROOQ, SAJID; RAFFAELI, ROCIO; CROCE, MARIA V.; CROCE, ADELA E.; ZEZELL, DENISE M.Here we applied ATR-FTIR spectroscopy combined with computational modeling based on 3D-discriminant analysis (3D-PCA-QDA). Our results present an exceptional performance of 3D-discriminant algorithms to diagnose BCC skin cancer, indicating the accuracy up to 99%.Artigo IPEN-doc 30186 Monitoring changes in urine from diabetic rats using ATR-FTIR and Machine Learning2023 - FAROOQ, SAJID; PERES, DANIELLA L.; CAIXETA, DOUGLAS C.; LIMA, CASSIO; SILVA, ROBINSON S. da; ZEZELL, DENISE M.Here, we aim to better characterize diabetes mellitus (DM) by analyzing 149 urine spectral samples, comprising of diabetes versus healthy control groups employing ATR-FTIR spectroscopy, combined with a 3D discriminant analysis machine learning approach. Our results depict that the model is highly precise with accuracy close to 100%.