SAJID FAROOQ

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • Artigo IPEN-doc 30368
    Recognition of breast cancer subtypes using FTIR hyperspectral data
    2024 - FAROOQ, SAJID; DEL-VALLE, MATHEUS; SANTOS, SOFIA N. dos; BERNARDES, EMERSON S.; ZEZELL, DENISE M.
    Fourier -transform infrared spectroscopy (FTIR) is a powerful, non-destructive, highly sensitive and a promising analytical technique to provide spectrochemical signatures of biological samples, where markers like carbohydrates, proteins, and phosphate groups of DNA can be recognized in biological micro -environment. However, method of measurements of large cells need an excessive time to achieve high quality images, making its clinical use difficult due to speed of data -acquisition and lack of optimized computational procedures. To address such challenges, Machine Learning (ML) based technologies can assist to assess an accurate prognostication of breast cancer (BC) subtypes with high performance. Here, we applied FTIR spectroscopy to identify breast cancer subtypes in order to differentiate between luminal (BT474) and nonluminal (SKBR3) molecular subtypes. For this reason, we tested multivariate classification technique to extract feature information employing three -dimension (3D) -discriminant analysis approach based on 3D -principle component analysis -linear discriminant analysis (3D-PCA-LDA) and 3D -principal component analysis -quadratic discriminant analysis (3D-PCA-QDA), showing an improvement in sensitivity (98%), specificity (94%) and accuracy (98%) parameters compared to conventional unfolded methods. Our results evidence that 3D-PCALDA and 3D-PCA-QDA are potential tools for discriminant analysis of hyperspectral dataset to obtain superior classification assessment.
  • Artigo IPEN-doc 30192
    A 3D discriminant analysis for hyperspectral FTIR images
    2023 - FAROOQ, SAJID; GERMANO, GLEICE; STANCARI, KLEBER A.; RAFFAELI, ROCIO; CROCE, MARIA V.; CROCE, ADELA E.; ZEZELL, DENISE M.
    Here, we apply a 3D discriminant analysis approach to analyze FTIR hyperspectral images of normal vs malignant Melanoma (MM) samples for skin cancer diagnosis. For this porpose we used 2 samples, for Normal (49k) and for MM(90k). Our results evidence the outstanding performance with accuracy up to 81% for big data (> 100k).
  • Artigo IPEN-doc 30188
    Identification of basal cell carcinoma skin cancer using FTIR and Machine learning
    2023 - PERES, DANIELLA L.; FAROOQ, SAJID; RAFFAELI, ROCIO; CROCE, MARIA V.; CROCE, ADELA E.; ZEZELL, DENISE M.
    Here we applied ATR-FTIR spectroscopy combined with computational modeling based on 3D-discriminant analysis (3D-PCA-QDA). Our results present an exceptional performance of 3D-discriminant algorithms to diagnose BCC skin cancer, indicating the accuracy up to 99%.
  • Artigo IPEN-doc 30186
    Monitoring changes in urine from diabetic rats using ATR-FTIR and Machine Learning
    2023 - FAROOQ, SAJID; PERES, DANIELLA L.; CAIXETA, DOUGLAS C.; LIMA, CASSIO; SILVA, ROBINSON S. da; ZEZELL, DENISE M.
    Here, we aim to better characterize diabetes mellitus (DM) by analyzing 149 urine spectral samples, comprising of diabetes versus healthy control groups employing ATR-FTIR spectroscopy, combined with a 3D discriminant analysis machine learning approach. Our results depict that the model is highly precise with accuracy close to 100%.