SAJID FAROOQ
2 resultados
Resultados de Busca
Agora exibindo 1 - 2 de 2
Artigo IPEN-doc 30774 High-performance plasmonics nanostructures in gas sensing2025 - FAROOQ, SAJID; BERECZKI, ALLAN; HABIB, MUHAMMAD; COSTA, ISOLDA; CARDOZO, OLAVOPlasmonic nanostructures have emerged as indispensable components in the construction of high-performance gas sensors, playing a pivotal role across diverse applications, including industrial safety, medical diagnostics, and environmental monitoring. This review paper critically examines seminal research that underscores the remarkable efficacy of plasmonic materials in achieving superior attributes such as heightened sensitivity, selectivity, and rapid response times in gas detection. Offering a synthesis of pivotal studies, this review aims to furnish a comprehensive discourse on the contemporary advancements within the burgeoning domain of plasmonic gas sensing. The featured investigations meticulously scrutinize various plasmonic structures and their applications in detecting gases like carbon monoxide, carbon dioxide, hydrogen and nitrogen dioxide. The discussed frameworks encompass cutting-edge approaches, spanning ideal absorbers, surface plasmon resonance sensors, and nanostructured materials, thereby elucidating the diverse strategies employed for advancing plasmonic gas sensing technologies.Artigo IPEN-doc 30236 Quantitative analysis of high performance plasmonic metamolecules for targeted deep tissues applications2023 - FAROOQ, SAJID; RATIVA, DIEGO; ARAUJO, RENATO E. deRationally designed gold nanoparticles (Au NPs) show a great potential for biomedical applications. Specifically, for optically induced heating of deep tissues facilitated by plasmonic-assisted lasers, nanostructures with high optical absorption coefficient in biological window are required. Plasmonic metamolecules, such as gold nanodimers (NDs), exhibit a robust localized field enhancement with strong infrared optical absorption. However, an exclusive investigation of the optical/ thermal features of high-performance Au NDs for optical infrared heating remains a challenge. Here, we focus on Au NDs for optothermal characteristics in deep tissues heating procedures. Our analysis encompasses parameters such as absorption cross-sections, field enhancement, and temperature rise with a systematic methodology selecting optimal NDs. Our findings reveal a non-uniform spatial distribution of temperature at the nano-scale and show that short-pulsed laser excitation enhances the temperature near the dimer’s junction. Remarkably, when compared to monomeric gold nanorods under the same excitation resonance mode, optically generated heating of Au NDs leads a threefold higher temperature increase. These results evidence valuable insights for using Au NDs as efficient plasmonic nanoheaters in photothermal-assisted applications.