VICTORIA MARTINS ALVES
3 resultados
Resultados de Busca
Agora exibindo 1 - 3 de 3
Capítulo IPEN-doc 29814 Nanodiagnostic tools for mycotoxins detection2022 - THIPE, VELAPHI C.; MENDES, GIOVANNA de O.A.; ALVES, VICTORIA M.; SOUZA, THAYNA; AJAYI, RACHEL F.; LUGAO, ADEMAR B.; KATTI, KATTESH V.In recent decades, mycotoxin contamination of agricultural food items has garnered considerable attention because to their high acute or chronic toxicity in humans and animals, resulting from consumption and exposure duration to contaminated food or feed. This is exacerbated by the impact of the Covid-19 pandemic, civil wars, and conflicts (e.g., the Russia-Ukraine conflict, Yemen, Ethiopia, Afghanistan, and others), which further strain the food security and nutritional status of the most vulnerable demographic groups, which are predicted to continue to deteriorate due to health and socioeconomic factors. The presence of these mycotoxins in food and animal feed has a negative impact on public health and the economy; consequently, it is crucial to detect and quantify these toxins in agricultural lots. Maintaining food quality and minimizing adverse effects on human and animal health are dependent on early detection. Conventional techniques for detecting mycotoxins include enzyme-linked immunoassay (ELISA), gas chromatography (GC), thin-layer chromatography (TLC), and high-performance liquid chromatography (HPLC). Nanomaterial-based sensor technologies provide diverse mitigation methods for quantifying single or multiple analytes, as mycotoxin co-occurrence in a single matrix has become more common. In this chapter, we describe recent advancements in nanodiagnostic techniques that permit multiplex detection of mycotoxins on a single platform. In addition, we discuss certain commercially available lateral flow immunoassay (LFIA) test strips that often use gold nanoparticles (AuNPs) or quantum dots (QDs) as colored labels for signal amplification, as well as some commercial goods with nanoformulations used in agriculture. For the commercialization of nano-based assays (nanosensors), nanodisks (nanoparticles-based artificial sensing), and that may be used as point-of-care testing (POCT) devices for mycotoxin detection, it will be necessary to conduct additional research and make additional investments to overcome the difficulties identified.Artigo IPEN-doc 29052 Mucoadhesive polymers and their applications in drug delivery systems for the treatment of bladder cancer2022 - LIMA, CAROLINE S.A. de; VARCA, JUSTINE P.R.O.; ALVES, VICTORIA M.; NOGUEIRA, KAMILA M.; CRUZ, CASSIA P.C.; RIAL-HERMIDA, M. ISABEL; KADLUBOWSKI, SLAWOMIR S.; VARCA, GUSTAVO H.C.; LUGAO, ADEMAR B.Bladder cancer (BC) is the tenth most common type of cancer worldwide, affecting up to four times more men than women. Depending on the stage of the tumor, different therapy protocols are applied. Non-muscle-invasive cancer englobes around 70% of the cases and is usually treated using the transurethral resection of bladder tumor (TURBIT) followed by the instillation of chemotherapy or immunotherapy. However, due to bladder anatomy and physiology, current intravesical therapies present limitations concerning permeation and time of residence. Furthermore, they require several frequent catheter insertions with a reduced interval between doses, which is highly demotivating for the patient. This scenario has encouraged several pieces of research focusing on the development of drug delivery systems (DDS) to improve drug time residence, permeation capacity, and target release. In this review, the current situation of BC is described concerning the disease and available treatments, followed by a report on the main DDS developed in the past few years, focusing on those based on mucoadhesive polymers as a strategy. A brief review of methods to evaluate mucoadhesion properties is also presented; lastly, different polymers suitable for this application are discussed.Artigo IPEN-doc 28073 The state of the art of theranostic nanomaterials for lung, breast, and prostate cancers2021 - FREITAS, LUCAS F.; FERREIRA, ARYEL H.; THIPE, VELAPHI C.; VARCA, GUSTAVO H.C.; LIMA, CAROLINE S.A.; BATISTA, JORGE G.S.; RIELLO, FABIANE N.; NOGUEIRA, KAMILA; CRUZ, CASSIA P.C.; MENDES, GIOVANNA O.A.; RODRIGUES, ADRIANA S.; SOUSA, THAYNA S.; ALVES, VICTORIA M.; LUGAO, ADEMAR B.The synthesis and engineering of nanomaterials offer more robust systems for the treatment of cancer, with technologies that combine therapy with imaging diagnostic tools in the so‐called nanotheranostics. Among the most studied systems, there are quantum dots, liposomes, polymeric nanoparticles, inorganic nanoparticles, magnetic nanoparticles, dendrimers, and gold nanoparticles. Most of the advantages of nanomaterials over the classic anticancer therapies come from their optimal size, which prevents the elimination by the kidneys and enhances their permeation in the tumor due to the abnormal blood vessels present in cancer tissues. Furthermore, the drug delivery and the contrast efficiency for imaging are enhanced, especially due to the increased surface area and the selective accumulation in the desired tissues. This property leads to the reduced drug dose necessary to exert the desired effect and for a longer action within the tumor. Finally, they are made so that there is no degradation into toxic byproducts and have a lower immune response triggering. In this article, we intend to review and discuss the state‐of‐the‐art regarding the use of nanomaterials as therapeutic and diagnostic tools for lung, breast, and prostate cancer, as they are among the most prevalent worldwide.