SILAS CARDOSO DOS SANTOS

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 12
  • Artigo IPEN-doc 30764
    Correlation between zeta potential and electron paramagnetic resonance of thulium, europium co-doped yttria based suspensions
    2024 - SANTOS, S.C.; RODRIGUES JUNIOR, O.; CAMPOS, L.L.
    The formation of advanced ceramic components with homogeneous microstructure and functional characteristics demands a suitable control of particle dispersion. Thus, the characterization of particle stability as immersed in a liquid medium is important. The present paper reports an approach to evaluate the stability of europium, thulium co-doped yttria (YET) nanoparticles by a correlation between zeta potential and Electron Paramagnetic Resonance (EPR) techniques. Based on results, YET suspensions exhibited high stability apart from pH 10, while their isoelectric point presented a slight variation from pHIEP 8.5 to 9.2 according to thulium content 0 and 2 at.%, respectively. The peak-to-peak amplitude of EPR spectra of the YET suspensions increased as pH shifted toward alkaline condition, following zeta potential curves features. The present achievements are very useful parameters to form stable suspensions based on rare-earth oxides and to advance toward new materials for radiation dosimetry.
  • Artigo IPEN-doc 29288
    A glance at dysprosium oxide free powders
    2023 - SANTOS, SILAS C.; RODRIGUES JUNIOR, ORLANDO; CAMPOS, LETICIA L.
    Background: Dysprosium oxide (Dy2O3) gathers a set of profitable properties with a wide range of applications, including energy and astronomy. Particular characteristics directly influence the formation and features of materials by colloidal processing. The main purpose of this paper is to carry out a powder characterization of Dy2O3particles. The findings reported are worthwhile parameters to advance in the formulation of new smart materials for radiation dosimetry. Methods: Dy2O3 powders were characterized by XRD, PCS, SEM, pynometric density (ρ), FTIR, ICP, EPR, and zeta potential (ζ). Results: The powdered samples exhibited as main features a cubic C-type structure following the RE-polymorphic diagram, a mean particle size distribution with d50 of 389nm, and pynometric density of 7.94g.cm-3. The EPR spectra revealed three distinct peaks, p1, p2, and p3, with the following g values: 2.3121, 2.1565, and 2.1146. In addition, the nanoparticles presented high stability at pH 5.5 and a ζ-value of |49.7|mV. Conclusion: The powder characterization of Dy2O3 powders was reported. The results achieved in this study may be considered worthwhile parameters to advance in the formulation of Dy2O3- based materials for radiation dosimetry.
  • Artigo IPEN-doc 29031
    Synthesis of thulium-yttria nanoparticles with EPR response
    2022 - SANTOS, S.C.; RODRIGUES JUNIOR, O.; CAMPOS, L.L.
    Approaches to form new materials for radiation dosimetry are essential to enhance quality assurance and quality improvement practices based on radiation protection concept. The present work reports a hydrothermal synthesis based on a relative low temperature and pressure to form thulium-yttria nanoparticles with electron paramagnetic resonance response. Thulium-yttria nanoparticles were prepared and characterized by XRD, SEM, PCS, and EPR. According to results, the hydrothermal method provided thulium-yttria nanoparticles with cubic C-type structure, mean particle size (d50) less than 160nm, and EPR response. The EPR spectra of powders exhibited two resonance peaks p1 and p2 recorded at 350 and 160mT, respectively. The enhancement of the EPR response of yttria by the use of thulium as a dopant provide meaningful parameters to advance in the formation of new rare earth-based materials for radiation dosimetry.
  • Artigo IPEN-doc 28934
    Evaluation of rare-earth sesquioxides nanoparticles as a bottom-up strategy toward the formation of functional structures
    2022 - SANTOS, SILAS C. dos; RODRIGUES JUNIOR, ORLANDO; CAMPOS, LETICIA L.
    Background: The strategy to form functional structures based on powder technology relies on the concept of nanoparticles characteristics. Rare-earth sesquioxides (RE2O3; RE as Y, Tm, Eu) exhibit remarkable properties, and their fields of application include energy, astronomy, environmental, medical, information technology, industry, and materials science. The purpose of this paper is to evaluate the characteristics of RE2O3 nanoparticles as a bottom-up strategy to form functional materials for radiation dosimetry. Methods: The RE2O3 nanoparticles were characterized by the following techniques: XRD, SEM, PCS, FTIR, ICP, EPR, and zeta potential. Results: All RE2O3 samples exhibited cubic C-type structure in accordance with the sesquioxide diagram, chemical composition over 99.9 %, monomodal mean particle size distribution, in which d50 value was inferior to 130 nm. Among all samples, only yttrium oxide exhibited an EPR signal, in which the most intense peak was recorded at 358mT and g 1.9701. Conclusion: Evaluating nanoparticle characteristics is extremely important by considering a bottom-up strategy to form functional materials. The RE2O3 nanoparticles exhibit promising characteristics for application in radiation dosimetry.
  • Artigo IPEN-doc 28523
    A glance on rare earth oxides
    2021 - SANTOS, SILAS; RODRIGUES, ORLANDO; CAMPOS, LETICIA
    Background: Innovation mission in material science requires new approaches to form functional materials, wherein the concept of its formation begins in nano/micro scale. Rare earth oxides with general form (RE2O3; RE from La to Lu, including Sc and Y) exhibit particular proprieties, being used in a vast field of applications with high technological content since agriculture to astronomy. Despite their applicability, there is a lack of studies on the surface chemistry of rare earth oxides. Zeta potential determination provides key parameters to form smart materials by controlling interparticle forces, as well as their evolution during processing. This paper reports a study on zeta potential with emphasis on rare earth oxide nanoparticles. A brief overview of rare earths, as well as zeta potential, including sample preparation, measurement parameters, and the most common mistakes during this evaluation are reported. Methods: A brief overview of rare earths, including zeta potential, and interparticle forces are presented. A practical study on zeta potential of rare earth oxides - RE2O3 (RE as Y, Dy, Tm, Eu, and Ce) in aqueous media is reported. Moreover, sample preparation, measurement parameters, and common mistakes during this evaluation are discussed. Results: Potential zeta values depend on particle characteristics such as size, shape, density, and surface area. Besides, the preparation of samples, which involves electrolyte concentration and time for homogenization of suspensions, is extremely valuable to get suitable results. Conclusion: Zeta potential evaluation provides key parameters to produce smart materials through which interparticle forces can be controlled. Even though zeta potential characterization is mature, investigations on rare earth oxides are very scarce. Therefore, this innovative paper is a valuable contribution to this field.
  • Artigo IPEN-doc 28431
    Colloidal processing of thulium-yttria microceramics
    2022 - SANTOS, S.C.; RODRIGUES JUNIOR, O.; CAMPOS, L.L.
    The development of new dosimetric materials is essential for the safe and effective use of nuclear technology. In the present study, an eco-friendly bio-prototyping approach was developed for preparing thulium-yttria microceramics with potential applications in radiation dosimetry. Micro-powder compacts were obtained by casting colloidal thulium-yttria suspensions prepared with 20 vol% particles in thin-walled tube templates. Samples were sintered at 1600 °C for 2 h under the environmental pressure and atmosphere to obtain thulium-yttria microceramics with dimensions of 3.33 ± 0.01 mm × 2.27 ± 0.01 mm (height × diameter), as well as a cubic C-type structure, pycnometric density of 4.79 g cm−3 (95.61% theoretical density), and surface microstructure comprising hexagon-like grains bonded at the boundaries. The use of thulium as an activator of yttria greatly improved the electron paramagnetic resonance (EPR) response of the microceramics, where the main EPR peak (p1) was recorded at 351.24 mT and the g factor was 2.0046. The innovative findings obtained in this study may facilitate the production of new solid state dosimeters.
  • Artigo IPEN-doc 27832
    Dispersion of thulium-yttria nanoparticles to build up smart structures
    2021 - SANTOS, S.C.; RODRIGUES JUNIOR, O.; CAMPOS, L.L.
    The development of new materials for radiation dosimetry is a challenge to assure quality improvement practices related to radiation protection concept. On this context, colloidal stability provides conditions to build up smart structured materials from bottom-up perspective. The present work reports zeta potential characterization of thulium-yttria nanoparticles in aqueous medium. Thulium-yttria nanoparticles formed by a relative low temperature hydrotermal synthesis were characterized by XRD, PCS, and SEM. The stability of particles in aqueous medium was evaluated by electrophoretic mobility measurements, followed by zeta potential calculation. The results revealed that the isoelectric point of thulium-yttria suspensions shifted in accordance with thulium concentration from pH 8.5 (“pure” yttria) to pH 9.2 (2at.%Tm). Besides, most suspensions could be stabilized at pH 10.5, presenting zeta potential values around 30 mV. These results are substantial parameters to advance toward new materials for radiation dosimetry.
  • Artigo IPEN-doc 27736
    Towards a new promising dosimetric material from formation of thulium-yttria nanoparticles with EPR response
    2021 - SANTOS, S.C.; RODRIGUES JUNIOR, O.; CAMPOS, L.L.
    Advances toward new materials for dosimetry application is essential to enhance quality assurance and quality improvement practices based on radiation protection concept. Face to this challenge the present work reports an approach to produce thulium-yttria nanoparticles with electron paramagntic resonance response by an alternative hydrothermal synthesis based on a relative low temperature and pressure. Distinct compositions of thulium-yttria nanoparticles with up to 2 at.%Tm (at.%, atomic percentage) were prepared and characterized by XRD, SEM, PCS, and EPR. The proposed synthesis method followed by thermal treatment of the precursor powder at 1100 ◦C for 2 h provided thulium-yttria nanoparticles with rounded shape, cubic C-type structure, and mean particle size (d50) less than 160 nm. Among all compositions formed, thulium-yttria nanoparticles prepared with 0.1%Tm presented the most remarkable EPR response. The production of fine thulium-yttria nanoparticles with EPR response supply meaningful parameters to advance in the formation of new dosimetry materials based on rare earths.
  • Artigo IPEN-doc 25214
    Synthesis, processing, and electron paramagnetic resonance response of Y1.98Eu0.02O3 micro rods
    2018 - SANTOS, S.C.; RODRIGUES JUNIOR, O.; CAMPOS, L.L.
    Innovating dosimetric materials, which includes design and development of new dosimetric materials based on rare earth oxides, is challenging. Yttrium oxide (Y2O3) is one of the most important sesquioxides and presents crystal characteristics that enable doping with rare earth ions, making it a promising material for radiation dosimetry. This paper reports on the development and measurement of Electron Paramagnetic Resonance (EPR) signal response for Y1.98Eu0.02O3 micro rods that have undergone facile low-pressure hydrothermal synthesis and bio-prototyping. Assynthesized powders with narrow sub-micrometer particle size distribution with d50 of 584 nm exhibited a reactive surface, which led to the formation of stable aqueous suspensions by controlling the surface charge density of particles through alkaline pH adjustment. Ceramic samples with dense microstructure were formed by sintering at 1600 ºC for 4h at ambient atmosphere. Y1.98Eu0.02O3 micro rods were irradiated using a 60Co source with doses from 1 to 100 kGy, and EPR spectra were measured at room temperature in X-band microwave frequencies. Sintered samples exhibited linearity of the main EPR signal response from 10 Gy to 10 kGy. Supralinearity was observed for higher doses, which is possibly ascribed to formation of more defects. Using europium as a dopant enhanced the EPR signal of yttrium rods remarkably, due to 4f–4f transitions of the Eu3+ ion. These innovative findings make europium-doped yttrium oxide a promising material for radiation dosimetry.
  • Artigo IPEN-doc 24787
    EPR dosimetry of yttria micro rods
    2018 - SANTOS, S.C.; RODRIGUES JUNIOR, O.; CAMPOS, L.L.
    The use of rare earths (RE) as dopant of materials has led the development of advanced materials for many applications such as optical tracers, special alloys, semiconductors, as well as radiation dosimeters. The development of new dosimetric materials based on REs is a great challenge in innovation of materials. Yttria (Y2O3) presents luminescent proprieties and is a promising material for radiation dosimetry. The present paper aims to evaluate paramagnetic defects of Y2O3 rods obtained via bio-prototyping by using Electron Paramagnetic Resonance (EPR) technique at room temperature. Ceramic rods were irradiated with gamma doses from 0.001 to 150 kGy and evaluated by EPR at room temperature with X-band EPR. According to EPR results, as sintered samples exhibited an EPR signal with principal g tensor of 2.020 and maximum line width around 2.3 mT, which is ascribed to interstitial oxygen ion. Dose response behaviour exhibited two distinct dose ranges, one is from 1 to 100Gy and the second is from 0.1 to 70 kGy. Thermal annealing approaches reveal that defect centres of yttria decay significantly at high temperature. These innovative results make Y2O3 a promising material for radiation dosimetry.