SILAS CARDOSO DOS SANTOS
2 resultados
Resultados de Busca
Agora exibindo 1 - 2 de 2
Artigo IPEN-doc 27736 Towards a new promising dosimetric material from formation of thulium-yttria nanoparticles with EPR response2021 - SANTOS, S.C.; RODRIGUES JUNIOR, O.; CAMPOS, L.L.Advances toward new materials for dosimetry application is essential to enhance quality assurance and quality improvement practices based on radiation protection concept. Face to this challenge the present work reports an approach to produce thulium-yttria nanoparticles with electron paramagntic resonance response by an alternative hydrothermal synthesis based on a relative low temperature and pressure. Distinct compositions of thulium-yttria nanoparticles with up to 2 at.%Tm (at.%, atomic percentage) were prepared and characterized by XRD, SEM, PCS, and EPR. The proposed synthesis method followed by thermal treatment of the precursor powder at 1100 ◦C for 2 h provided thulium-yttria nanoparticles with rounded shape, cubic C-type structure, and mean particle size (d50) less than 160 nm. Among all compositions formed, thulium-yttria nanoparticles prepared with 0.1%Tm presented the most remarkable EPR response. The production of fine thulium-yttria nanoparticles with EPR response supply meaningful parameters to advance in the formation of new dosimetry materials based on rare earths.Artigo IPEN-doc 23196 Bio-prototyping of europium-yttria based rods for radiation dosimetry2017 - SANTOS, S.C.; RODRIGUES JUNIOR, O.; CAMPOS, L.L.The application of solid state dosimeters in radiation protection has grown significantly as consequence of advances in the development of dosimetric materials using rare earths. The conception of new dosimetric materials concerns synthesis methods, which control the evolution of material structure, including further processing steps as, shaping, drying, and sintering. The present study reports a full bio-prototyping approach to produce europium doped yttria rods with potential application in radiation dosimetry. Ceramic particles synthesized by hydrothermal route were characterized by Photon Correlation Spectroscopy (PCS), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM). The effect of europium on promoting electronic defects in yttria host was evaluated by Electron Paramagnetic Resonance (EPR). Low pressure hydrothermal synthesis led to formation of rounded particles with mean diameter of 410 nm. Aqueous suspensions with 20 vol% of particles prepared at pH 10, and 0.2 wt% binder exhibited apparent viscosity of 213 mPa s, being suitable for bio-prototyping of rods. Sintering of shaped samples at 1600 degrees C for 4 h provided formation of dense ceramic rods. Europium-yttria rods containing 5 at.% Eu exhibited the most intense EPR response.