SILAS CARDOSO DOS SANTOS

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 30764
    Correlation between zeta potential and electron paramagnetic resonance of thulium, europium co-doped yttria based suspensions
    2024 - SANTOS, S.C.; RODRIGUES JUNIOR, O.; CAMPOS, L.L.
    The formation of advanced ceramic components with homogeneous microstructure and functional characteristics demands a suitable control of particle dispersion. Thus, the characterization of particle stability as immersed in a liquid medium is important. The present paper reports an approach to evaluate the stability of europium, thulium co-doped yttria (YET) nanoparticles by a correlation between zeta potential and Electron Paramagnetic Resonance (EPR) techniques. Based on results, YET suspensions exhibited high stability apart from pH 10, while their isoelectric point presented a slight variation from pHIEP 8.5 to 9.2 according to thulium content 0 and 2 at.%, respectively. The peak-to-peak amplitude of EPR spectra of the YET suspensions increased as pH shifted toward alkaline condition, following zeta potential curves features. The present achievements are very useful parameters to form stable suspensions based on rare-earth oxides and to advance toward new materials for radiation dosimetry.
  • Artigo IPEN-doc 29900
    Building up europium thulium co-doped yttria nanoparticles with electron paramagnetic resonance response by colloidal synthesis
    2023 - SANTOS, SILAS C. dos; RODRIGUES JR., ORLANDO; CAMPOS, LETICIA L.
    In the radiation dosimetry field the research for new materials is a continuos demand with the aim to provide highly improvement procedures where ionizing radiation is used. Considering this challenge, the present work reports the colloidal synthesis of europium-thulium-co-doped yttria powders (YET) and evaluates the dopants effect on the promotion of EPR response of yttria. The powdered compositions prepared with up to 2at.%Tm and 2at.%Eu (at.%, atomic percentage) were evaluate by XRD, PCS, SEM, and EPR. Based on the results, the proposed synthesis method provided ceramic powders with cubic C-type form and mean particle size (d50) less than 160nm. The most significant EPR dose-response was noticed for the powdered composition prepared with 0.5at. %Tm (YET0.5) as irradiated with 5kGy (60Co). These findings are key parameters to advance toward the formation of new materials for radiation dosimetry.