SILAS CARDOSO DOS SANTOS

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 7 de 7
  • Artigo IPEN-doc 29288
    A glance at dysprosium oxide free powders
    2023 - SANTOS, SILAS C.; RODRIGUES JUNIOR, ORLANDO; CAMPOS, LETICIA L.
    Background: Dysprosium oxide (Dy2O3) gathers a set of profitable properties with a wide range of applications, including energy and astronomy. Particular characteristics directly influence the formation and features of materials by colloidal processing. The main purpose of this paper is to carry out a powder characterization of Dy2O3particles. The findings reported are worthwhile parameters to advance in the formulation of new smart materials for radiation dosimetry. Methods: Dy2O3 powders were characterized by XRD, PCS, SEM, pynometric density (ρ), FTIR, ICP, EPR, and zeta potential (ζ). Results: The powdered samples exhibited as main features a cubic C-type structure following the RE-polymorphic diagram, a mean particle size distribution with d50 of 389nm, and pynometric density of 7.94g.cm-3. The EPR spectra revealed three distinct peaks, p1, p2, and p3, with the following g values: 2.3121, 2.1565, and 2.1146. In addition, the nanoparticles presented high stability at pH 5.5 and a ζ-value of |49.7|mV. Conclusion: The powder characterization of Dy2O3 powders was reported. The results achieved in this study may be considered worthwhile parameters to advance in the formulation of Dy2O3- based materials for radiation dosimetry.
  • Artigo IPEN-doc 29031
    Synthesis of thulium-yttria nanoparticles with EPR response
    2022 - SANTOS, S.C.; RODRIGUES JUNIOR, O.; CAMPOS, L.L.
    Approaches to form new materials for radiation dosimetry are essential to enhance quality assurance and quality improvement practices based on radiation protection concept. The present work reports a hydrothermal synthesis based on a relative low temperature and pressure to form thulium-yttria nanoparticles with electron paramagnetic resonance response. Thulium-yttria nanoparticles were prepared and characterized by XRD, SEM, PCS, and EPR. According to results, the hydrothermal method provided thulium-yttria nanoparticles with cubic C-type structure, mean particle size (d50) less than 160nm, and EPR response. The EPR spectra of powders exhibited two resonance peaks p1 and p2 recorded at 350 and 160mT, respectively. The enhancement of the EPR response of yttria by the use of thulium as a dopant provide meaningful parameters to advance in the formation of new rare earth-based materials for radiation dosimetry.
  • Artigo IPEN-doc 28934
    Evaluation of rare-earth sesquioxides nanoparticles as a bottom-up strategy toward the formation of functional structures
    2022 - SANTOS, SILAS C. dos; RODRIGUES JUNIOR, ORLANDO; CAMPOS, LETICIA L.
    Background: The strategy to form functional structures based on powder technology relies on the concept of nanoparticles characteristics. Rare-earth sesquioxides (RE2O3; RE as Y, Tm, Eu) exhibit remarkable properties, and their fields of application include energy, astronomy, environmental, medical, information technology, industry, and materials science. The purpose of this paper is to evaluate the characteristics of RE2O3 nanoparticles as a bottom-up strategy to form functional materials for radiation dosimetry. Methods: The RE2O3 nanoparticles were characterized by the following techniques: XRD, SEM, PCS, FTIR, ICP, EPR, and zeta potential. Results: All RE2O3 samples exhibited cubic C-type structure in accordance with the sesquioxide diagram, chemical composition over 99.9 %, monomodal mean particle size distribution, in which d50 value was inferior to 130 nm. Among all samples, only yttrium oxide exhibited an EPR signal, in which the most intense peak was recorded at 358mT and g 1.9701. Conclusion: Evaluating nanoparticle characteristics is extremely important by considering a bottom-up strategy to form functional materials. The RE2O3 nanoparticles exhibit promising characteristics for application in radiation dosimetry.
  • Resumo IPEN-doc 28642
    Synthesis of thulium-yttria nanoparticles with EPR response
    2021 - SANTOS, S.C.; RODRIGUES JUNIOR, O.; CAMPOS, L.L.
    Introduction: High dose dosimetry demands a continuous effort towards the development of new materials with the aim to guarantee assurance of activities in which ionizing radiation is used. The present work reports a hydrothermal synthesis based on a relative low temperature and pressure to form thulium-yttria nanoparticles with electron paramagnetic resonance response. Material and method: Thulium-yttria nanoparticles (Tm:Y2O3) prepared with 0.1at.%Tm (atomic percentage, at.%) were synthesized by an eco-friendly hydrothermal process as reported in previous study[1]. The nanoparticles were characterized by Photon Correlation Spectroscopy (PCS), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Electron Paramagnetic Resonance (EPR). Results: According to results, the hydrothermal method provided thulium-yttria nanoparticles with cubic C-type structure, mean particle size (d50) less than 90nm (Fig.1), and EPR response. The EPR spectra of powders exhibited two resonance peaks p1 and p2 recorded at 350 and 160mT, respectively (Fig.2). Conclusions: The enhancement of the EPR response of yttria by the use of thulium as a dopant provide meaningful parameters to advance in the formation of new rare earth based materials for radiation dosimetry.
  • Artigo IPEN-doc 28523
    A glance on rare earth oxides
    2021 - SANTOS, SILAS; RODRIGUES, ORLANDO; CAMPOS, LETICIA
    Background: Innovation mission in material science requires new approaches to form functional materials, wherein the concept of its formation begins in nano/micro scale. Rare earth oxides with general form (RE2O3; RE from La to Lu, including Sc and Y) exhibit particular proprieties, being used in a vast field of applications with high technological content since agriculture to astronomy. Despite their applicability, there is a lack of studies on the surface chemistry of rare earth oxides. Zeta potential determination provides key parameters to form smart materials by controlling interparticle forces, as well as their evolution during processing. This paper reports a study on zeta potential with emphasis on rare earth oxide nanoparticles. A brief overview of rare earths, as well as zeta potential, including sample preparation, measurement parameters, and the most common mistakes during this evaluation are reported. Methods: A brief overview of rare earths, including zeta potential, and interparticle forces are presented. A practical study on zeta potential of rare earth oxides - RE2O3 (RE as Y, Dy, Tm, Eu, and Ce) in aqueous media is reported. Moreover, sample preparation, measurement parameters, and common mistakes during this evaluation are discussed. Results: Potential zeta values depend on particle characteristics such as size, shape, density, and surface area. Besides, the preparation of samples, which involves electrolyte concentration and time for homogenization of suspensions, is extremely valuable to get suitable results. Conclusion: Zeta potential evaluation provides key parameters to produce smart materials through which interparticle forces can be controlled. Even though zeta potential characterization is mature, investigations on rare earth oxides are very scarce. Therefore, this innovative paper is a valuable contribution to this field.
  • Artigo IPEN-doc 27832
    Dispersion of thulium-yttria nanoparticles to build up smart structures
    2021 - SANTOS, S.C.; RODRIGUES JUNIOR, O.; CAMPOS, L.L.
    The development of new materials for radiation dosimetry is a challenge to assure quality improvement practices related to radiation protection concept. On this context, colloidal stability provides conditions to build up smart structured materials from bottom-up perspective. The present work reports zeta potential characterization of thulium-yttria nanoparticles in aqueous medium. Thulium-yttria nanoparticles formed by a relative low temperature hydrotermal synthesis were characterized by XRD, PCS, and SEM. The stability of particles in aqueous medium was evaluated by electrophoretic mobility measurements, followed by zeta potential calculation. The results revealed that the isoelectric point of thulium-yttria suspensions shifted in accordance with thulium concentration from pH 8.5 (“pure” yttria) to pH 9.2 (2at.%Tm). Besides, most suspensions could be stabilized at pH 10.5, presenting zeta potential values around 30 mV. These results are substantial parameters to advance toward new materials for radiation dosimetry.
  • Artigo IPEN-doc 27736
    Towards a new promising dosimetric material from formation of thulium-yttria nanoparticles with EPR response
    2021 - SANTOS, S.C.; RODRIGUES JUNIOR, O.; CAMPOS, L.L.
    Advances toward new materials for dosimetry application is essential to enhance quality assurance and quality improvement practices based on radiation protection concept. Face to this challenge the present work reports an approach to produce thulium-yttria nanoparticles with electron paramagntic resonance response by an alternative hydrothermal synthesis based on a relative low temperature and pressure. Distinct compositions of thulium-yttria nanoparticles with up to 2 at.%Tm (at.%, atomic percentage) were prepared and characterized by XRD, SEM, PCS, and EPR. The proposed synthesis method followed by thermal treatment of the precursor powder at 1100 ◦C for 2 h provided thulium-yttria nanoparticles with rounded shape, cubic C-type structure, and mean particle size (d50) less than 160 nm. Among all compositions formed, thulium-yttria nanoparticles prepared with 0.1%Tm presented the most remarkable EPR response. The production of fine thulium-yttria nanoparticles with EPR response supply meaningful parameters to advance in the formation of new dosimetry materials based on rare earths.