THAIS CORREA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 14
  • Carbon dioxide and methane levels in surface waters along the São Vicente island in coastal region of São Paulo state
    2024 - ARAUJO, ELAINE C.; ANDRADE, IZABEL S.; MACEDO, FERNANDA de M.; CORREA, THAIS; ANDRADE, THAIS; BRAGA, ELISABETE S.; ANDRADE, MARIA de F.; LANDULFO, EDUARDO
    Various studies explore the relationship between the rising levels of CO2 and CH4 (greenhouse gasses) in the atmosphere and climate changes, and how these increases are connected to human activities. The escalation of these gas species may have implications for the environment. Concerning coastal systems, the rise in greenhouse gas emissions could impact the environment through multiple pathways because the atmosphere and superficial ocean waters also have significant exchanges. The main purpose of this work is to study Greenhouse gasses (GHG), such as CO2 and CH4, on the superficial waters of the coastal region of São Paulo coast. The data were collected in situ on a vessel provided by the Institute of Oceanography of São Paulo University (IOUSP). The campaign was conducted in spring 2022 (10-11 Оctober) in the south of the coast of São Paulo state, traveling through cities with anthropogenic impacts in principal Santos city, which is located the main port of Sul America. For these in situ measurements a portable gas analyzer Microportable Greenhouse Gas Analyzers (LGR-ICOS ™ GLA Series) was used to detect the CO2 and CH4 spectra through the Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) technique.
  • Artigo IPEN-doc 30956
    Preliminary study of greenhouse gases near to Santos and São Sebastião ports
    2024 - ARAUJO, ELAINE C.; ANDRADE, IZABEL da S.; CORREA, THAIS; ANDRADE, THAIS; MACEDO, FERNANDA de M.; BRAGA, ELISABETE S.; ANDRADE, MARIA de F.; LANDULFO, EDUARDO
    The carbon biogeochemical cycle in nature involves the atmosphere, ocean, terrestrial and marine biota, and mineral reservoirs, with major fluxes between the atmosphere and both terrestrial biota and ocean waters. Studies link the increase of CO2 and CH4 (GHG) to climate change and anthropogenic activities. Coastal zones have a significant impact on the carbon cycle. This study examines GHG concentrations in estuary systems close to port zones, focusing on Santos and São Sebastião ports in São Paulo, Brazil. Santos Port, the largest in Latin America, and São Sebastião Port, with a petroleum terminal, can be significant contributors of GEE. A preliminary campaign measured CO2 and CH4 for 27 hours using a portable GHG analyzer on the research vessel Albacora from the University of São Paulo's Oceanographic Institute. Results showed promising GHG concentrations, with CO2 levels above 420 ppm near Santos and above 450 ppm near São Sebastião, for methane, the major concentration was ~3 ppm, but in short period of acquisitions, in the major part of traject the level was between ~1.8 - ~1.9 ppm.
  • Artigo IPEN-doc 30947
    Assessment of methane concentrations in estuarine regions on the coast of the state of São Paulo
    2024 - CORREA, THAIS; ANDRADE, IZABEL da S.; MACEDO, FERNANDA de M.; ARAUJO, ELAINE C.; ANDRADE, MARIA de F.; BRAGA, ELISABETE S.; LANDULFO, EDUARDO
    We evaluated concentrations of atmospheric CH4, which is considered one of the main gases causing global warming. We observed methane concentrations in the Cananéia-Iguape estuarine system on the southern coast of the state of São Paulo, Brazil and in the Santos estuary, Baixada Santista region, coast of the state of São Paulo, Brazil. The south coast region is widely studied as it presents very well-preserved fauna and flora and thus offers an important background on natural emissions. Data acquisition was carried out by a portable gas analyzer (LGR-ICOSTM GLA131), this equipment has a high sensitivity in detecting the gases under study and was placed on board the research vessels Albacora and Alpha Delphini owned by the Institute of Oceanography at the University of São Paulo in campaigns that were carried out between 2021 and 2023 in specific periods. The concentrations observed during the exploratory campaigns in the estuaries on the coast of the State of São Paulo (Iguape Cananéia Estuarine-Lagunar Complex and Santos Estuary) behaved as described in the literature, regions with greater anthropic impact present higher values of methane concentrations in the atmosphere, low-impact regions have lower methane concentrations.
  • Artigo IPEN-doc 30789
    Evaluation of the potential for greenhouse gas (CO2, CH4) emissions in the southern São Paulo coastal region, Cananéia-Iguape system
    2024 - ARAUJO, ELAINE C.; CORREA, THAIS; ANDRADE, IZABEL da S.; MACEDO, FERNANDA de M.; MARQUES, MARCIA T.; ANDRADE, THAIS; SOUTO-OLIVEIRA, CARLOS E.; BRAGA, ELISABETE S.; ANDRADE, MARIA de F.; LANDULFO, EDUARDO
    The emissions of CH4 and CO2, the primary greenhouse gases, have a significant impact on radiative forcing. This study investigated these gases along the Cananéia-Iguape estuarine system on the southern coast of the State of São Paulo, Brazil, which is a mangrove region characterized by low anthropogenic impact and a sparse population. As such, this area provides an ideal location for identifying natural emissions and background concentrations. The data for this study were collected using a portable gas analyzer (LGRICOSTM GLA131), known for its high sensitivity and precision in detecting gases, mounted on a research boat. The results obtained were promising for both gases. A small variability in CH4 concentrations was observed along the route, ranging from 1.84 ppm to 1.95 ppm, while CO2, showed greater variation in values obtained during routes, ranging from approximately 411 ppm to 575 ppm. This study underscores the importance of investigating areas with minimal environmental impact. Together with future analyses, this research should help improve Greenhouse Gas (GHG) inventories in Brazil by providing valuable baseline data for comparisons with more impacted areas.
  • Artigo IPEN-doc 30209
    Comparison of PBL heights from ceilometer measurements and greenhouse gases concentrations in São Paulo
    2023 - SANTOS, AMANDA V. dos; ARAUJO, ELAINE C.; ANDRADE, IZABEL da S.; CORREA, THAIS; MARQUES, MARCIA T.A.; SOUTO-OLIVEIRA, CARLOS E.; LEONARDO, NOELE F.; MACEDO, FERNANDA de M.; SOUZA, GIOVANNI; LOPES, PEROLA P. de Q.; MOREIRA, GREGORI de A.; ANDRADE, MARIA de F.; LANDULFO, EDUARDO
    This paper presents a study conducted in São Paulo, Brazil, where the planetary boundary layer height (PBLH) was determined using ceilometer data and the wavelet covariance transform method. The retrieved PBLH values were subsequently compared with the concentrations of CO2 and CH4 measured at three distinct experimental sites in the city. The period of study was July 2021. This study also included a comparison between ceilometer data and lidar data, which demonstrated the favorable applicability of the ceilometer data for PBLH estimation. An examination of the correlation between changes in average CO2 concentrations and PBLH values revealed stronger correlations for the IAG and UNICID stations, with correlation coefficients (ρ) of approximately −0.86 and −0.85, respectively, in contrast to the Pico do Jaraguá station, which exhibited a lower correlation coefficient of −0.42. When assessing changes in CH4 concentrations against variations in PBL height, the retrieved correlation coefficients were approximately −0.78 for IAG, −0.66 for UNICID, and −0.38 for Pico do Jaraguá. The results indicated that CO2/CH4 concentrations are negatively correlated with PBL heights, with CO2 concentrations showing more significant correlation than CH4 . Additionally, among the three measurement stations, IAG measurements displayed the most substantial correlation. The results from this study contribute to the understanding of the relationship between PBLH and greenhouse gas concentrations, emphasizing the potential of remote sensing systems like ceilometers in monitoring and studying atmospheric processes.
  • Resumo IPEN-doc 28973
    Spatial-temporal analysis of NO2 in the Metropolitan Region of São Paulo
    2021 - ANDRADE, IZABEL da S.; ARAUJO, ELAINE C.; CORREA, THAIS; MACEDO, FERNANDA de M; LANDULFO, EDUARDO
    Nowadays, several methods of monitoring air pollutants exist, however few allow a large spatial and temporal coverage. Sentinel-5P is a satellite dedicated to atmospheric monitoring with a high spatial-temporal resolution, offering a large data of miscellaneous chemical species. Nitrogen oxides (NO and NO2), emitted by anthropogenic activities into the atmosphere - in large urban centers their main emitting source is vehicles - need particular attention, , in addition to being primary pollutants, they are precursors for formation of other chemical species due to photochemical reactions, mainly tropospheric ozone. These photochemical interactions of NOX stimulate to reduce its lifetime in the atmosphere. Furthermore, these pollutants are used as air quality indexes. The Metropolitan Region of São Paulo (MRSP) has more than 30 cities, being an important economic center for the state of São Paulo. The MRSP has highways with high circulation of light and heavy vehicles, industries and also a high population density. Such factors make this region a favorable area for a satellite study. Thus, the present work uses Sentinel-5P NO2 L2 data in order to analyze the evolution of concentrations throughout 2019.
  • Resumo IPEN-doc 28971
    Methane determination in São Paulo coastal regions using the Cavity Ring-Down Spectroscopy (CRDS) technique
    2021 - CORREA, THAIS; MACEDO, FERNANDA M.; ARAUJO, ELAINE C.; ANDRADE, IZABEL S.; GOMES, ANTONIO A.; SILVA, JONATAN; LANDULFO, EDUARDO
    Methane is one of the main greenhouse gases due to its high radiation absorption capacity. The increase in methane emissions from anthropogenic sources causes concern in the entire scientific community due to the aggregated uncertainties, generating several works focused on the identification and quantification of generating sources. This work aims to quantify methane in two distinct regions, the first study region is in Cubatão city, located in the São Paulo coast. It is an important petrochemical complex with high industrial activities and environmental impact, presenting 25 large companies in the chemical sector, distributed in an area of 143 Km2. Another region observed is Intanhaém, on the coast of the state of São Paulo. This region doesn´t present industrial activity and has a low population index. The technique used to detect methane in the atmosphere was Cavity ring-down spectroscopy (CRDS), which consists on analysis of atmospheric components, in a small cavity that has a laser and high reflectivity mirrors of 99.999%, allowing the signal travel for kilometers inside the cavity, in a short time, increasing the sensitivity of detection of compounds in the sample.
  • Resumo IPEN-doc 28967
    Preliminary study of greenhouse gases in the Santos Basin
    2021 - ARAUJO, ELAINE C.; ANDRADE, IZABEL da S.; MACEDO, FERNANDA de M.; CORREA, THAIS; LANDULFO, EDUARDO
    The production of oil and gas onshore and offshore are associated with significant emissions of greenhouse gases, as the entire production chain of oil exploration is a potential source of emission of these gases, especially CH4, which is in almost all stages of the process However, few data is available on emissions from oil exploration platforms in Brazil, despite the increase in oil production on the Brazilian coast since 2008 with the implementation of the Pre-Salt program, which aims to explore oil in the pre-salt layer. Between the explored areas is the Santos Basin which occupies about 350,000 km2 and is located in the southeast region of the Brazilian continental margin, approximately 290 km off the coast of Rio de Janeiro and encompasses the coastlines of the States of Rio de Janeiro, São Paulo , Paraná and Santa Catarina, with boundaries to the north with the Campos Basin by the Alto de Cabo Frio and to the south by the Pelotas Basin by the Florianópolis Platform. Better understanding the ocean-atmosphere interactions in the Santos Basin region, specifically in the coastal area of São Paulo, a temporal analysis was performed using data from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, which provides data on active burning and from Sentinel-5P (Sentinel 5 Precursor satellite) which brings information from several chemical species, such as NO2 and CH4.
  • Artigo IPEN-doc 28401
    Methane detection in the lower troposphere related to the burning of biomass and leakage in a petrochemical pole, using Raman lidar technique
    2021 - MACEDO, FERNANDA de M.; CORREA, THAIS; ARAUJO, ELAINE C.; ANDRADE, IZABEL da S.; GUARDANI, ROBERTO; VESELOVSKII, IGOR; LANDULFO, EDUARDO
    Fugitive emissions, defined as unintended or irregular leaks of gases and vapors, are an important source of pollutants to the atmosphere, which is difficult to monitor and control. These sources are present in different sites, especially in regions that are growing in size and economic activity. In this study, we present the results of the capability to detect methane profiles at low troposphere combining data retrieval correlations between a rotacional/vibracional Raman lidar (RVRL) and a cavity ring-down spectrometer (CRDS). The measurements were made at two different sites, metropolitan area of São Paulo (MSP) and industrial area of Cubatão (IC). The lidar is based on a tripled Nd:YAG laser with a 20 Hz repetition rate, operating on the 355 nm wavelength elastic channel, the 353 nm and 396 nm wavelength inelastic channels. A measurement protocol was established, considering acquisition time for signal accumulation, climatic conditions and data above and below the planetary boundary layer. The idea was to establish specific measurement procedures for situations related to product leakage in the oil process and natural events, such as biomass burning. With over 150 hours of data acquisition, the results pointed the possibility of analyzing data from distances up to 1500 m with an initial resolution of 7.5 m which was extended to 100 - 300 m after data smoothing for obtaining final results. The concentration was calculated from the ratio between the methane Raman backscatter signal and the nitrogen signal, at 396 nm and 353 nm, respectively. The temporal variation of methane concentrations was correlated with CRDS data, in order to obtain a first degree calibration.
  • Resumo IPEN-doc 27985
    Analysis of the dispersion of aerosol in Cubatão-SP using remote sensing techniques
    2019 - ANDRADE, I. da S.; LANDULFO, E.; ARAUJO, E.C.; MENDONCA, F. de M.; SALANI, M.H.G. de A.; CORREA, T.; MARQUES, M.T.; COSTA, R.F. da; GUARDANI, R.
    Aerosls are emitted by a several sources, these can be antropogenic – emitted by human activities - or natural.Their sudies are an important, because its impacts on the dynamics of the Earth’s atmosphere are huge. The study area have one of the most important industrial complex in the state of Sao Paulo. In the past the city of Cubatão was known as “death valey”, due to the environmental problems caused by the high levels of pollutants that was emitted by the industries. Following this event, regulatory laws on atmospheric emissions were developed, both at the state and federal levels. Today, although Cubatão has lower levels of pollution and controlled industrial emissions, but it is possible to observe overcoming air quality standards. Based on the presented context, the present work aims to conduct a study of the dispersion of aerosols in the region of Cubatão-SP using several techniques, such as: remote sensing (elastic lidar and wind lidar), satellite data, air quality information and also simulations of air masses using a model.