CAIO ALMEIDA JUSTINO DA SILVA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • Artigo IPEN-doc 28360
    Study of ph effect on AZ31 magnesium alloy corrosion for using in temporary implants
    2020 - SILVA, CAIO A.J. da; BRAGUIN, LILIAN N.M.; BERBEL, LARISSA O.; VIVEIROS, BARBARA V.G.; ROSSI, J.L.; SAIKI, M.; COSTA, I.
    Currently, magnesium alloys are gaining great interest for medical applications due to their degrading properties in the human body ensuring a great biocompatibility. These alloys also provide profitable mechanical properties due similarities with human bone. However, a difficulty in applying these materials in the biomaterials industries is the corrosion prior to cell healing. The effect of the chemical composition of Mg alloys on their corrosion behavior is well known. In this study, samples of AZ31 magnesium alloy were cut into chips for elemental chemical analysis by neutron activation analysis (NAA). Concentrations of the elements As, La, Mg, Mn, Na, Sb and Zn were determined in the AZ31 alloy. Visualization tests of agar corrosion development in various media, of 0.90% sodium chloride solution (mass), phosphate buffer saline (PBS) and simulated body fluid (SBF) were performed. Visualizations of the effect of agar gel corrosion revealed pH variation during the corrosion process due to the released into the cathode. The highest released of hydroxyl ions occurred in NaCl solution compared to PBS and SBF solutions indicating that NaCl solution was much more aggressive to the alloy compared to the others.
  • Artigo IPEN-doc 28250
    Nuclear techniques in the analyses of magnesium-based alloys
    2021 - SILVA, C.A.J.; BRAGUIN, L.N.M.; ROSSI, J.L.; SCAPIN, M.A.; COSTA, I.; SAIKI, M.
  • Artigo IPEN-doc 27919
    Determination of chemical elements in magnesium-based materials by neutron activation analysis
    2021 - SILVA, C.A.J.; BRAGUIN, L.N.M.; ROSSI, J.L.; COSTA, I.; SAIKI, M.
    Over the last decades there was an increasing interest in using magnesium alloys for medical applications due to their biodegradability in the human body, providing a temporary mechanical support and corroding completely after the tissue healing. Although magnesium is a non-toxic element, it is of great importance to evaluate the element concentration, as well as the impurities present in both, pure magnesium and magnesium alloys, as the AZ31. The purpose of this study was to analyze the element composition of these materials using the method of neutron activation analysis (NAA). Standard Reference Materials (SRMs) acquired from National Institute of Standards and Technology (NIST) were analyzed for analytical quality control. Short and long term irradiations were carried out at the IEA-R1 nuclear research reactor and gamma-ray activities induced to the samples and element standard were measured using HPGe detector coupled to a Digital Spectrum Analyzer. The radioisotopes were identified by gamma ray energies and half-life. Concentrations of the elements As, Cr, Cd, Co, Fe, In, La, Mg, Mn, Mo, Na, Sb, V, W and Zn were determined in pure magnesium sample and the Al, As, La, Mg, Mn, Na, Sb and Zn in the AZ31 alloy, calculated by comparative method. The SRMs were analyzed by applying the same experimental conditions used for magnesium-based materials and their results presented good accuracy and precision. Thus, from the measurements obtained in this study it can be concluded that NAA is a suitable method for element determinations in magnesium-based materials providing reliable results.