MARCIA PIRES DE CAMPOS

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 28530
    Radon concentrations in a nuclear reactor center in Brazil
    2021 - SILVA, PAULO S.C. da; CAMPOS, MARCIA P. de; EL HAJJ, THAMMIRIS M.; REIS, GUILHERME de L.
    Radiation workers are normally exposed to doses resulting from their day-to-day activities. Besides that, background radiation, such as radon, can contribute to the exposure rates. The radionuclide 222Rn is a noble gas belonging to the uranium series, and its indoor concentration in the air depends on the exhalation from surrounding soil and the exhalation from building materials. Radon exhaling from porous building materials containing high uranium concentrations can become a significant exposure factor in areas with limited ventilation. The objective of this study was to evaluate the 222Rn concentrations in the radiochemistry and radiometric laboratories in the nuclear reactor building of the Nuclear Reactor Center (CERPq) located in the Institute of Nuclear and Energy Research (IPEN), São Paulo, Brazil. Measurements were done using a Radon Gas Monitor, model RAD7, equipped with a solid-state alpha detector. A passive method (SSNTD) was also used, consisting of square pieces of C-39 foils (2.5 cm × 2.5 cm) placed within small diffusion chambers. The CR-39 detectors were etched in KOH 30% solution at 80 °C for 5.5 h in a constant-temperature bath. After etching, the detectors were washed, dried, and scanned using a microscope to obtain the track density measurements. The activity concentrations measured with both techniques varied from 52 to 103 Bq m−3 in the studied areas of the CERPq. These values may be compared to the reference level of 100 Bq m−3 established by the World Health Organization to ensure safety environments.
  • Artigo IPEN-doc 21314
    Radon exposure at a radioactive waste storage facility
    2014 - MANOCCHI, F.H.; CAMPOS, M.P.; DELLAMANO, J.C.; SILVA, G.S.
    The Waste Management Department of Nuclear and Energy Research Institute (IPEN) is responsible for the safety management of the waste generated at all internal research centers and that of other waste producers such as industry, medical facilities, and universities in Brazil. These waste materials, after treatment, are placed in an interim storage facility. Among them are 226Ra needles used in radiotherapy, siliceous cake arising from conversion processes, and several other classes of waste from the nuclear fuel cycle, which contain Ra-226 producing 222Rn gas daughter. In order to estimate the effective dose for workers due to radon inhalation, the radon concentration at the storage facility has been assessed within this study. Radon measurements have been carried out through the passive method with solid-state nuclear track detectors (CR-39) over a period of nine months, changing detectors every month in order to determine the long-term average levels of indoor radon concentrations. The radon concentration results, covering the period from June 2012 to March 2013, varied from 0.55 ± 0.05 to 5.19 ± 0.45 kBq m−3 . The effective dose due to 222Rn inhalation was further assessed following ICRP Publication 65.