RICARDO MARCELO PIASENTIN
2 resultados
Resultados de Busca
Agora exibindo 1 - 2 de 2
Artigo IPEN-doc 25826 Structural analysis of PdRh/C and PdSn/C and its use as electrocatalysts for ethanol oxidation in alkaline medium2019 - FONTES, ERIC H.; RAMOS, CARLOS E.D.; NANDENHA, JULIO; PIASENTIN, RICARDO M.; OLIVEIRA NETO, ALMIR; LANDERS, RICHARDThe Pd/C, PdRh(50:50)/C and PdSn(50:50)/C nanomaterials were used as electrocatalysts for ethanol (EtOH) oxidation in Direct Ethanol Fuel Cell (DEFC) in an alkaline medium. This work aims to provide a complete physical characterization of the nanomaterials, elucidate the bifunctional mechanism concerning ethanol oxidation reaction and understand the influence of carbon e metal bonding in the electrochemical activity. These nanomaterials were investigated by X-ray photoelectron spectroscopy (XPS) and revealed that the atomic percentage of the surface is different of those obtained by Energy Dispersive X-ray spectroscopy (EDS). Raman spectroscopy showed a bonding between palladium and carbon atoms which can play a decisive role in the performance of the materials. Attenuated Total Reflectance technique coupled to the Fourier Transform Infrared spectroscopy (ATR-FTIR) made possible to investigate the oxidation products originated by the ethanol oxidation, and all the electrocatalysts showed the presence of acetaldehyde, carbonate ions, acetate and carbon dioxide, suggesting that the mechanism of oxidation is incomplete. Among all the nanomaterials studied, PdSn(50:50)/C showed the best electrochemical and Fuel Cell's results. It is about 33% better than Pd/C. The micrographs obtained by Transmission Electron Microscopy (TEM) revealed some agglomerate regions, but they are consistent with the literature data.Artigo IPEN-doc 22846 The effect of antimony-tin and indium-tin oxide supports on the catalytic activity of Pt nanoparticles for ammonia electro-oxidation2016 - SILVA, JULIO C.M.; PIASENTIN, RICARDO M.; SPINACE, ESTEVAM V.; NETO, ALMIR O.; BARANOVA, ELENA A.Platinum nanoparticles supported on carbon (Pt/C) and carbon with addition of ITO (Pt/C-ITO (In2O3)(9)center dot(SnO2)(1)) and ATO (Pt/C-ATO (SnO2)(9).(Sb2O5)(1)) oxides were prepared by sodium borohydride reduction method and used for ammonia electro-oxidation reaction (AmER) in alkaline media. The effect of the supports on the catalytic activity of Pt for AmER was investigated using electrochemical (cyclic voltammetry and chronoamperometry) and direct ammonia fuel cell (DAFC) experiments. X-ray diffraction (XRD) showed Pt peaks attributed to the face-centered cubic (fcc) structure, as well as peaks characteristic of In2O3 in ITO support and cassiterite SnO2 phase of ATO support. According to transmission electron micrographs the mean particles sizes of Pt over carbon were 5.4, 4.9 and 4.7 nm for Pt/C, Pt/C-ATO and Pt/C-ITO, respectively. Pt/C-ITO catalysts showed the highest catalytic activity for ammonia electrooxidation in both electrochemical and fuel cell experiments. We attributed this to the presence of In2O3 phase in ITO, which provides oxygenated or hydroxide species at lower potentials resulting in the removal of poisonous intermediate, i.e., atomic nitrogen (N-ads) and promotion of ammonia electrooxidation. (C) 2016 Elsevier B.V. All rights reserved.