FLAVIO KIYOSHI TOMINAGA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • Artigo IPEN-doc 30419
    BDD-persulfate-based anodic oxidation process for progestin degradation
    2024 - JESUS, JULIANA M.S. de; ARGOLO, ALLAN dos S.; TOMINAGA, FLAVIO K.; BILA, DANIELE M.; BORRELY, SUELI I.; TEIXEIRA, ANTONIO C.S.C.
    Considering the increasing presence of the hormones levonorgestrel (LNG) and gestodene (GES) in wastewater, the limited effectiveness of conventional treatment methods, and the demand for advanced complementary processes, our study aimed to optimize an anodic oxidation treatment with a focus on low specific energy consumption (SEC) and costs. An electrochemical system coupled to a boron-doped diamond anode (BDD) was continuously used to treat synthetic and real pharmaceutical wastewater from contraceptive production. The central design composite and response surface methodology were the tools employed for optimization. The lowest SEC was obtained as a response to the main process variables: current density, initial pH, and the concentration of the support electrolyte ([Na2S2O8]). The optimal condition ([Na2S2O8]0 = 0.07 mol L−1; [LNG]0,RPW = 1.02±0.05 mg L−1 and [GES]0,RPW = 1.05±0.05 mg L−1; j = 37.5 mA cm−2; pH = 6.75) was established considering an SEC ≤ 3.6 ± 0.8 kWh g−1 and progestins removal ≥70%, which was the experimental condition used to evaluate acute toxicity to Daphnia similis and the effect on estrogenic activity removal using the YES assay. Notably, our study evaluated, for the first time, a comparative investigation that highlights the substantial effect of support electrolytes over the eco-compatibility assessment of the anodic oxidation process investigated. The adaptability of the operation indicates the prospective suitability for the implementation of the process in wastewater treatment facilities in the pharmaceutical industry.
  • Artigo IPEN-doc 29627
    Electron beam irradiation applied for the detoxification and degradation of single ciprofloxacin aqueous solution and multiclass pharmaceutical quaternary mixture
    2023 - TOMINAGA, FLAVIO K.; BOIANI, NATHALIA F.; SILVA, THALITA T.; SANTOS, JONAS G. dos; LEBRE, DANIEL T.; LEO, PATRICIA; BORRELY, SUELI I.
    The application of electron beam irradiation for detoxification and degradation of single antibiotic ciprofloxacin (CPF) and in a mixture with multiclass pharmaceuticals in aqueous solutions was carried out. Ecotoxicity assays indicated that the green algae were most sensitive to antibiotic and also that the presence of several pharmaceutical increased the toxicity. After the irradiation treatment, degradation results of single antibiotic indicated reduction of 95.86 % at 1.0 kGy. Total organic carbon decreased up to 38 % at 5.0 kGy. At lower doses (1.0 kGy), no effect in toxicity was evidenced, however, increase in toxicity for Vibrio fischeri was observed after 2.5 kGy. For Daphnia similis exposure, an increase in toxicity was noted for all applied doses. In contrast, for the green algae R. subcapitata toxicity reduction varied from 62.3 to 81.9 % at the evaluated doses. Toxicity assays to microbes E. coli and S. aureus reduced antibacterial activity of CPF after irradiation treatment. Regarding the irradiated quaternary mixture at 2.5 kGy, reduction up to 96 % was achieved for the ciprofloxacin, metformin and acetylsalicylic acid, and 81 % removal was achieved for fluoxetine. Acute assays with V. fischeri indicated no increase in toxicity, while some increase was noted for D. similis (acute effects). Nevertheless, chronic assays data indicated low toxicity reduction (14 %) with D. similis, and complete detoxification was shown for the green algae after the irradiation. In addition, decrease in antimicrobial activity was noted after the treatment. Furthermore, the in-silico model was not enough accurate for the prediction of CIP toxicity. These findings showed that electron beam irradiation can be applied for reducing the impacts of antibiotics in aquatic ecosystem. Measuring toxicity on living-organism from different trophic levels are useful tools to evaluate the interaction of mixtures and also to assess toxicity of the generated byproducts.
  • Artigo IPEN-doc 29039
    Acute and chronic ecotoxicological effects of pharmaceuticals and their mixtures in Daphnia similis
    2022 - TOMINAGA, FLAVIO K.; BOIANI, NATHALIA F.; SILVA, THALITA T.; GARCIA, VANESSA S.G.; BORRELY, SUELI I.
    Pharmaceuticals have increasingly received attention from the scientific community due to their growing intake, improved detection and potential ecological risks. Several pharmaceuticals, including antidepressants, anti-inflammatory and antidiabetic compounds and antibiotics, have been described as contaminants in different water matrices. In this context, the aim of the present study was to assess the acute and chronic effects of four classes of pharmaceuticals (acetylsalicylic acid, fluoxetine, metformin and ciprofloxacin) individually and in binary and quartenary mixture. Furthermore, the toxicity of binary mixtures containing the antidepressant fluoxetine was also evaluated. The results of the single acute and chronic toxicity assays indicate lower acetylsalicylic acid and higher fluoxetine toxicity towards Daphnia similis. Regarding the evaluated mixture toxicity, the nature of potential toxicological interactions was predicted by applying mathematical concentration addition and independent action models. The findings revealed both antagonistic and synergistic features, depending on the applied amounts and doses. Finally, the chronic assays performed with the quaternary mixture indicated the presence of a hormetic effect at low concentrations. In sum, the present study demonstrated that the effects of individual pharmaceuticals can underestimate the risk level of these contaminants in the environment.
  • Artigo IPEN-doc 28860
    Radiolytic degradation of levonorgestrel and gestodene
    2022 - JESUS, JULIANA M.S. de; TOMINAGA, FLAVIO K.; ARGOLO, ALLAN dos S.; NASCIMENTO, ANA C.G.; BORRELY, SUELI I.; VIEIRA, DANIEL P.; BILA, DANIELE M.; TEIXEIRA, ANTONIO C.S.C.
    This study reports the feasibility of ionizing sources (60Co source and electron beam radiation) to degrade the progestins hormones levonorgestrel (LNG) and gestodene (GES) in synthetic solutions and real pharmaceutical wastewater (RPW). Doses of 0.5–100 kGy and dose rates of 2.5 and 10 kGy h−1 were applied. LNG was shown to be more recalcitrant than GES, with 90% removals achieved at doses around 7.7 kGy (LNG) and 1.6 kGy (GES) in model systems, with LNG showing greater reactivity with reducing species in γ-radiolyis, unlike GES. Furthermore, LNG removal remained around 60% in RPW at low doses, while more than 60% GES removal was observed for all doses. LNG and GES toxicities to Daphnia similis were absorbed dose-dependent, with low doses resulting in toxicity reductions of around 32% (LNG) and 42% (GES); in turn, high doses promoted a fourfold increase in toxicity. γ-radiolysis reduced the cytotoxic character of LNG to NIH-3T3-L1 cells, while non-irradiated or irradiated GES solutions did not exhibit any cytotoxic effect. Finally, the estrogenic activity, evaluated by the YES assay, was dose-dependent for both progestins, which may be related to the evolution of transformation products formed by water radiolysis in each case, decreasing for high doses.