FLAVIO KIYOSHI TOMINAGA
2 resultados
Resultados de Busca
Agora exibindo 1 - 2 de 2
Artigo IPEN-doc 29630 Experimental design and bioassays as tools to investigate the impact of anodic oxidation on progestins degradation2023 - JESUS, JULIANA M.S. de; ARGOLO, ALLAN dos S.; TOMINAGA, FLAVIO K.; TAQUEDA, MARIA E.; BILA, DANIELE M.; BORRELY, SUELI I.; TEIXEIRA, ANTONIO C.S.C.The present study investigated the degradation of levonorgestrel (LNG) and gestodene (GES) through an anodic oxidation process mediated by active chlorine species. The independent variables [LNG]0 and [GES]0, current density (mA cm−2), and [NaCl]0 (mol L−1) were optimized through a response surface methodology (RSM) based on a four-level central composite design (CCD). Specific energy consumption allowed CCD-RSM analysis and optimization. The decay of progestins was followed to verify the kinetics of the anodic degradation process. Chlorine monitoring showed that excess Cl− concentration did not mean high hormones removal, as well as the excess of current density. Central point conditions ([NaCl]0 = 0.07 mol L−1, j = 32.5 mA cm−2, [LNG]0, and [GES]0 1.0 mg L−1) proved to be the best operational option. The performance with real pharmaceutical wastewater confirmed model optimization (2.2 ± 0.2 kWh g−1, with removals of 83.1 ± 0.9% and 75.1 ± 2.8% for LNG and GES, respectively). The selected condition was used for estrogenic activity and acute toxicity assays. The first allowed the identification of the initial estrogenic activity for the mixture of LNG and GES (924 E2-EQ ng L−1). Additionally, the electrochemical process could decrease this environmental parameter by 74.6%. The progestin mixture was classified as acute toxicity to Daphnia similis, with a toxicity unit (TU) of 2.5 100/EC50%. After electrolysis, the hormone solutions reached a fourfold increase in TU value, classified as high acute toxicity.Artigo IPEN-doc 27785 Is ionizing radiation effective in removing pharmaceuticals from wastewater?2021 - TOMINAGA, FLAVIO K.; SILVA, THALITA T.; BOIANI, NATHALIA F.; JESUS, JULIANA M.S. de; TEIXEIRA, ANTONIO C.S.C.; BORRELY, SUELI I.Wastewater and effluent discharges are the main causes of receiving water body pollution and important challenges in water quality management. Among the emerging contaminants, pharmaceuticals have increasingly drawn attention due to their incomplete removal during conventional biological treatment, inducing potential and actual risks to living organisms following residue discharges in river effluent. Electron beam irradiation (EBI) is a clean process technology for organic compound degradation and mineralization, as well as persistent pollutant detoxification. This study aimed to evaluate EBI effects on the degradation and toxicity removal of anti-inflammatory aspirin (ASA) in a single solution and in a fluoxetine (FLX) mixture. Results indicate that 98% of the single aspirin was degraded at 5.0 kGy. Aspirin toxicity to Daphnia similis, however, increased with increasing absorbed dose (1.0 to 5.0 kGy), possibly as a result of the presence of H2O2 and other byproducts formed during the oxidation process. Regarding the irradiated mixture, complete degradation was achieved for both pharmaceuticals. Toxicity removals for the mixture were of 56.2 ± 0.9% and 58.8 ± 5.4% for 1.0 and 2.5 kGy, respectively. These findings demonstrate that EBI can be an interesting alternative process to be applied as a pre-treatment followed by biological treatment.