CAIO SILVESTRE DE CARVALHO CORREIA
4 resultados
Resultados de Busca
Agora exibindo 1 - 4 de 4
Artigo IPEN-doc 29913 Increased Amazon carbon emissions mainly from decline in law enforcement2023 - GATTI, LUCIANA V.; CUNHA, CAMILLA L.; MARANI, LUCIANO; CASSOL, HENRIQUE L.G.; MESSIAS, CASSIANO G.; ARAI, EGIDIO; DENNING, SCOTT A.; SOLER, LUCIANA S.; ALMEIDA, CLAUDIO; SETZER, ALBERTO; DOMINGUES, LUCAS G.; BASSO, LUANA S.; MILLER, JOHN B.; GLOOR, MANUEL; CORREIA, CAIO S.C.; TEJADA, GRACIELA; NEVES, RAIANE A.L.; RAJÃO, RAONI; NUNES, FELIPE; S.FILHO, BRITALDO S.; SCHMITT, JAIR; NOBRE, CARLOS; CORRÊA, SERGIO M.; SANCHES, ALBER H.; ARAGÃO, LUIZ E.O.C.; ANDERSON, LIANA; VON RANDOW, CELSO; CRISPIM, STEPHANE P.; SILVA, FRANCINE M.; MACHADO, GUILHERME B.M.The Amazon forest carbon sink is declining, mainly as a result of land-use and climate change1–4. Here we investigate how changes in law enforcement of environmental protection policies may have affected the Amazonian carbon balance between 2010 and 2018 compared with 2019 and 2020, based on atmospheric CO2 vertical profiles5,6, deforestation7 and fire data8, as well as infraction notices related to illegal deforestation9. We estimate that Amazonia carbon emissions increased from a mean of 0.24 ± 0.08 PgC year−1 in 2010–2018 to 0.44 ± 0.10 PgC year−1 in 2019 and 0.52 ± 0.10 PgC year−1 in 2020 (± uncertainty). The observed increases in deforestation were 82% and 77% (94% accuracy) and burned area were 14% and 42% in 2019 and 2020 compared with the 2010–2018 mean, respectively. We find that the numbers of notifications of infractions against flora decreased by 30% and 54% and fines paid by 74% and 89% in 2019 and 2020, respectively. Carbon losses during 2019–2020 were comparable with those of the record warm El Niño (2015–2016) without an extreme drought event. Statistical tests show that the observed differences between the 2010– 2018 mean and 2019–2020 are unlikely to have arisen by chance. The changes in the carbon budget of Amazonia during 2019–2020 were mainly because of western Amazonia becoming a carbon source. Our results indicate that a decline in law enforcement led to increases in deforestation, biomass burning and forest degradation, which increased carbon emissions and enhanced drying and warming of the Amazon forests.Artigo IPEN-doc 27964 Amazonia as a carbon source linked to deforestation and climate change2021 - GATTI, LUCIANA V.; BASSO, LUANA S.; MILLER, JOHN B.; GLOOR, MANUEL; DOMINGUES, LUCAS G.; CASSOL, HENRIQUE L.G.; TEJADA, GRACIELA; ARAGAO, LUIZ E.O.C.; NOBRE, CARLOS; PETERS, WOUTER; MARANI, LUCIANO; ARAI, EGIDIO; SANCHES, ALBER H.; CORREA, SERGIO M.; ANDERSON, LIANA; VON RANDOW, CELSO; CORREIA, CAIO S.C.; CRISPIM, STEPHANE P.; NEVES, RAIANE A.L.Amazonia hosts the Earth’s largest tropical forests and has been shown to be an important carbon sink over recent decades. This carbon sink seems to be in decline, however, as a result of factors such as deforestation and climate change. Here we investigate Amazonia’s carbon budget and the main drivers responsible for its change into a carbon source. We performed 590 aircraft vertical profiling measurements of lower-tropospheric concentrations of carbon dioxide and carbon monoxide at four sites in Amazonia from 2010 to 2018. We find that total carbon emissions are greater in eastern Amazonia than in the western part, mostly as a result of spatial differences in carbon-monoxide-derived fire emissions. Southeastern Amazonia, in particular, acts as a net carbon source (total carbon flux minus fire emissions) to the atmosphere. Over the past 40 years, eastern Amazonia has been subjected to more deforestation, warming and moisture stress than the western part, especially during the dry season, with the southeast experiencing the strongest trends. We explore the effect of climate change and deforestation trends on carbon emissions at our study sites, and find that the intensification of the dry season and an increase in deforestation seem to promote ecosystem stress, increase in fire occurrence, and higher carbon emissions in the eastern Amazon. This is in line with recent studies that indicate an increase in tree mortality and a reduction in photosynthesis as a result of climatic changes across Amazonia.Artigo IPEN-doc 22444 Regional atmospheric COsub(2) inversion reveals seasonal and geographic differences in Amazon net biome exchange2016 - ALDEN, CAROLINE B.; MILLER, JOHN B.; GATTI, LUCIANA V.; GLOOR, MANUEL M.; GUAN, KAIYU; MICHALAK, ANNA M.; LAAN LUIJKX, INGRID T. van der; TOUMA, DANIELLE; ANDREWS, ARLYN; BASSO, LUANA S.; CORREIA, CAIO S.; DOMINGUES, LUCAS G.; JOINER, JOANNA; KROL, MAARTEN C.; LYAPUSTIN, ALEXEI I.; PETERS, WOUTER; SHIGA, YOICHI P.; THONING, KIRK; VALDE, IVAR R. van der; LEEUWEN, THIJS T. van; YADAV, VINEET; DIFFENBAUGH, NOAH S.Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate–carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (~1–8 9 106 km2 ) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere–atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub-Basin estimates have not been previously available.Artigo IPEN-doc 20038 Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements2014 - GATTI, L.V.; GLOOR, M.; MILLER, J.B.; DOUGHTY, C.E.; MALHI, Y.; DOMINGUES, L.G.; BASSO, L.S.; MARTINEWSKI, A.; CORREIA, C.S.C.; BORGES, V.F.; FREITAS, S.; BRAZ, R.; ANDERSON, L.O.; ROCHA, H.; GRACE, J.; PHILLIPS, O.L.; LLOYD, J.