TATIANA SANTANA BALOGH

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 28864
    Synthesis of poly(N-vinyl pyrrolidone) (PVP) nanogels by gamma irradiation using different saturation atmospheres
    2022 - BALOGH, TATIANA S.; BONTURIM, EVERTON; VIEIRA, LUCAS D.; LUGAO, ADEMAR B.; KADLUBOWSKI, SLAWOMIR
    Nanogels are internally crosslinked particles of nanometric size used in various fields e.g. as such as carriers in drug delivery systems. They can be produced using ionizing radiation in dilute aqueous solutions. This method is carried out in a pure polymer-solvent system, avoiding the addition of any additives such as monomers, surfactants, catalysts and crosslinking agents and no further purification step is necessary. Poly(N-vinyl pyrrolidone) (PVP K-90) nanogels were prepared by gamma irradiation in an aqueous solution. The samples were prepared in triplicate in multipurpose cobalt-60 gamma irradiator using 1, 10, 25 and 100 mM PVP solutions. Samples were irradiated in argon and nitrous oxide conditions with doses from 1 kGy up to 25 kGy with 10 kGy/h dose rate. The mean particle size (Rh) was determined by Dynamic Light Scattering (DLS) and radius of gyration (Rg) and weight-average molecular weight (Mw) by Static Light Scattering (SLS). These samples were morphologically characterized using Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM). Samples prepared with 100 mM PVP K-90 solution formed macroscopic gels, in the samples obtained with 25 mM PVP K-90 solution there was a prevalence of intermolecular crosslinking. On the other hand, in the samples generated with 10 mM PVP K-90 solution, there was a predominance of intramolecular crosslinking demonstrated in the tendency to: decrease in the radius of gyration (Rg), in the constancy of the weight-average molecular weight (Mw), in the increase in polymer coil density (ρcoil), in the Rg/Rh ratio (shape factor) around 1.0 indicating homogenous, internally cross-linked spheres, in the high relief spherical structures observed in the AFM images and in the spherical particles with high contrast observed in the TEM images. The saturation of the samples with nitrous oxide doubled formation of hydroxyl radicals, favoring the generation of polymeric radicals. Higher average number of radicals in each macromolecule contributed to the higher number of intramolecular crosslinks.
  • Artigo IPEN-doc 27582
    An updated review of macro, micro, and nanostructured hydrogels for biomedical and pharmaceutical applications
    2020 - LIMA, CAROLINE S.A. de; BALOGH, TATIANA S.; VARCA, JUSTINE P.R.O.; VARCA, GUSTAVO H.C.; LUGAO, ADEMAR B.; CAMACHO-CRUZ, LUIS A.; BUCIO, EMILIO; KADLUBOWSKI, SLAWOMIR S.
    Hydrogels are materials with wide applications in several fields, including the biomedical and pharmaceutical industries. Their properties such as the capacity of absorbing great amounts of aqueous solutions without losing shape and mechanical properties, as well as loading drugs of different nature, including hydrophobic ones and biomolecules, give an idea of their versatility and promising demand. As they have been explored in a great number of studies for years, many routes of synthesis have been developed, especially for chemical/permanent hydrogels. In the same way, stimuli-responsive hydrogels, also known as intelligent materials, have been explored too, enhancing the regulation of properties such as targeting and drug release. By controlling the particle size, hydrogel on the micro- and nanoscale have been studied likewise and have increased, even more, the possibilities for applications of the so-called XXI century materials. In this paper, we aimed to produce an overview of the recent studies concerning methods of synthesis, biomedical, and pharmaceutical applications of macro-, micro, and nanogels.