DIEGO ROBERTO DA CUNHA PASCOAL

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 31135
    Combination of micro-Raman and infrared spectroscopy to identify intriguing case of aged microplastics of estuarine sediments
    2024 - SANTOS, JACINETE L. dos; BERECZKI, ALLAN; PASCOAL, DIEGO R. da C.; GIMILIANI, GIOVANA T.; COTRIM, MARYCEL E.B.; FREITAS, ANDERSON Z. de; WETTER, NIKLAUS U.; PARRA, DUCLERC F.
    The Atlantic Forest is one of the richest regions in biodiversity in the world. Originally the biome covered around 15% of the Brazilian territory. Currently, there are approximately 12.4% of forest remnants preserved in the country. Regarding mangrove areas in the state of São Paulo, there are around 223 km2 according to the Brazilian Mangrove Atlas, with around 120.5 km2 located in Baixada Santista. Analysis of sediments found in the estuarine mangroves of Santos shows a high concentration of microplastics (MPs), generated by industrial processes and human activity, that constitutes today one of the main environmental problems. The MPs presented in the sediment samples are quantified using a methodology that involves drying, sieving, quantification, and identification of these MPs through FTIR and micro-Raman spectroscopy. The two techniques complement each other to identify MP filaments and fragments through common polymer spectra. Furthermore, the micro-Raman technique also identified additives flexo blue (blue ink) and neolan green 8G (dye) in MPs. All identified polymers (< 5 mm) have wide applications and demands in various sectors, including packaging, construction, automotive, electronics, and textiles.
  • Artigo IPEN-doc 30048
    Micro-Raman spectroscopy identification of hydroxyapatite in dental pulp stem cells
    2023 - SILVA, FLAVIA R.O.; PASCOAL, DIEGO R.C.; BERECZKI, ALLAN; SIPERT, CARLA R.; BRAGA, ROBERTO R.; BELLINI, MARIA H.; SILVA, LUIS F.T.; FREITAS, ANDERSON Z.; WETTER, NIKLAUS U.
    Cell differentiation using calcium phosphate nanoparticles was studied. The hydroxyapatite was internalized in human dental pulp stem cells and characterized by Raman spectroscopy. Raman spectra showed the hydroxyapatite distribution in nanoparticles nodules in the cells.