SABINE NEUSATZ GUILHEN

Resumo

Possui graduação em Química com atribuições Tecnológicas e Biotecnológicas pelo Instituto de Química da Universidade de São Paulo (2005), mestrado (2009) e doutorado (2018) em Tecnologia Nuclear (Materiais) pelo Instituto de Pesquisas Energéticas e Nucleares (IPEN), Universidade de São Paulo. Tem experiência em Química Analítica com ênfase em Análise de Traços, atuando principalmente no desenvolvimento de métodos analíticos empregando técnicas espectrofotométricas (AAS, ICP OES e ICP-MS) para caracterização de amostras ambientais, arqueológicas, biológicas, forenses e nucleares. Atualmente, ocupa o cargo de Tecnologista em "Caracterização Química" no Centro de Química e Meio Ambiente (CQMA) do IPEN (CNEN/SP), onde desempenha atividades de pesquisa e desenvolvimento tecnológico em atendimento às demandas institucionais ligadas ao Ciclo do Combustível Nuclear e aos Programas de Pesquisa de caráter multidisciplinar, em apoio a projetos de Inovação Tecnológica e ao Programa de Pós-Graduação do IPEN/USP. Além disso, atua na geração de produtos tecnológicos e no desenvolvimento de materiais adsorventes de baixo custo e alto valor agregado visando o aproveitamento de materiais e resíduos naturais e/ou renováveis no tratamento de efluentes e rejeitos. (Texto extraído do Currículo Lattes em 4 maio 2023)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 1 de 1
  • Artigo IPEN-doc 27252
    Fast, efficient and clean adsorption of bisphenol-A using renewable mesoporous silica nanoparticles from sugarcane waste ash
    2020 - ROVANI, SUZIMARA; SANTOS, JONNATAN J.; GUILHEN, SABINE N.; CORIO, PAOLA; FUNGARO, DENISE A.
    Even with all the biological problems associated with bisphenol-A (BPA), this chemical is still being widely used, especially in thermal paper receipts. In this study, renewable mesoporous silica nanoparticles (MSN), obtained from sugarcane ash, functionalized with hexadecyltrimethylammonium (CTAB) were applied as an adsorbent in the removal of BPA from the aqueous solution. The versatility of this material and its BPA adsorption capacity were tested at different pH values, being practically constant at pH between 4 and 9, with a slight increase in pH 10 and a greater increase in pH 11. The removal time evaluation indicates a very fast adsorption process, removing almost 90% of BPA in the first 20 min of contact. The kinetic model indicates a monolayer formation of BPA molecules on the MSN-CTAB surface. The maximum adsorption capacity (Qmax) was 155.78 mg g-1, one of the highest found in literature, and the highest for material from a renewable source.