FELIPE ANCHIETA E SILVA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 25045
    Ni supported Ce0.9Sm0.1O2-δ nanowires
    2019 - RODRIGUES, THENNER S.; MOURA, ARTHUR B.L. de; SILVA, FELIPE A. e; CANDIDO, EDUARDO G.; SILVA, ANDERSON G.M. da; OLIVEIRA, DANIELA C. de; QUIROZ, JHON; CAMARGO, PEDRO H.C.; BERGAMASCHI, VANDERLEI S.; FERREIRA, JOAO C.; LINARDI, MARCELO; FONSECA, FABIO C.
    We reported herein the synthesis in high yields (> 97%) of Ce0.9Sm0.1O2-δ nanowires displaying well-defined shape, size, and composition by a simple, fast, and low-cost two-step hydrothermal method. The Ce0.9Sm0.1O2-δ nanowires synthesis was followed by the wet impregnation of Ni without the utilization of any stabilizing agent. The Ni/Ce0.9Sm0.1O2-δ nanowires showed higher surface area, high concentration of oxygen vacancies at surface, and finely dispersed Ni particles with significantly higher metallic surface area as compared with catalysts prepared from commercial materials with similar compositions. Such unique and improved properties are reflected on the catalytic performance of the Ni/Ce0.9Sm0.1O2-δ nanowires towards ethanol steam reforming. The nanowires exhibited high yields for hydrogen production (∼60% of selectivity) and an exceptional stability with no loss of activity after 192 h of reaction at 550 °C. The reported results provide insights and can inspire highyield production of nanostructured catalysts displaying controlled and superior properties that enable practical applications in heterogeneous catalysis.
  • Resumo IPEN-doc 24843
    Hardwired for success
    2017 - RODRIGUES, THENNER S.; MOURA, ARTHUR B.; SILVA, FELIPE A. e; CANDIDO, EDUARDO G.; BERGAMASCHI, VANDERLEI S.; FERREIRA, JOAO C.; LINARDI, MARCELO; FONSECA, FABIO C.
    CeO2-based nanomaterials have been extensively employed in catalysis and industry, showing excellent performances towards a variety of applications. In the past few decades, great developments have been reported associating the properties of nanostructured CeO2 with its catalytic performances. Thus, an intense research in this field have been performed in order to increasingly improve the performances of these nanomaterials such as the precise control over their structures, morphologies, compositions, among others. We propose herein, the synthesis of a novel well-defined Sm2O3-doped CeO2 nanowires decorated with nickel nanoparticles as a novel catalyst with outstanding performance towards ethanol steam reforming (ESR). In order to address these challenges, we were inspired by a well-established hydrothermal method for the synthesis of CeO2 nanowires. Herein, through simple modifications in the original protocol allowed us the obtaining in high yield (97%) extremely well-defined CeO2-Sm2O3 nanowires exhibiting uniform distributions in lengths and diameters. XRD results (Figure 1A) suggested the introduction of Sm species into the CeO2 crystal lattices, in which the quantitative Sm3+(aq) conversion achieved 10 mol%, as corroborated by ICP-OES analysis. The resulting CeO2-Sm2O3 nanowires were then employed as support for the Ni incorporation (1 wt%) by a wet impregnation approach, and the obtained catalyst (Figure 1B) was evaluated towards the ESR displaying an exceptional stability even after 100 hours of process at 550 °C. More specifically, 100 % of ethanol conversion was observed with the formation of only H2 and CO2 (ESR products) and CO and CH4 as byproducts (both in low concentrations), indicating a good selectivity for ESR compared to the most recent literature. The characterization data for the Ni/CeO2-Sm2O3 nanowires after catalytic experiment (Figure 1C) indicated that, even after 100 hours at 550 °C, no loss of shape was observed as well as no carbon structures formation justifying the exceptional observed stability.