DAILI DE ANDRADE DOS SANTOS BARREIRA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Capítulo IPEN-doc 25624
    Comparative study of the use of rice husk ashes and graphite as fillers in polypropylene matrix composites
    2019 - MONTEIRO, ALEX S.; BARREIRA, DAILI A.S.; BARTOLOMEI, SUELLEN S.; OLIVEIRA, RENE R.; MOURA, ESPERIDIANA A.B. de
    In recent years, carbonaceous materials have been widely studied for polymer composite applications due to its capability to improve the engineering properties of the polymeric matrix. Among various carbonaceous fillers, carbon nanotube, graphene, and graphite promise to be a suitable reinforcement of polymers. Rice husk ash (RHA), a large residue rich in carbon and silica produced by the burning of rice husk offers also an immense potential as a carbonaceous filler for polymer composites on account of its lowcost, lowdensity, high strength and elastic modulus, no health risks, and renewability. This work aims at studying the effects of RHA and graphite as fillers in polypropylene (PP) matrix composites. The composites PP/RHA and PP/graphite were produced by melting extrusion process. The materials obtained were subjected to mechanical tests, XRD, TG, and FEG-SEM analyses. Comparison studies between neat PP properties and its composites were carried out.
  • Capítulo IPEN-doc 25622
    An investigation of mechanical and thermal properties of polypropylene reinforced with different clays
    2019 - MONTEIRO, ALEX S.; BARREIRA, DAILI A.S.; SILVA, JAQUELINE S.; OLIVEIRA, RENE R.; VALENZUELA-DIAZ, FRANCISCO R.; MOURA, ESPERIDIANA A.B.
    Nowadays, environmental awareness and an increasing concern with the greenhouse effect have increased the interest in composite materials containing at least one of the components from natural origin. Natural clays seem to be a good alternative because they are environmentally acceptable, naturally abundant minerals, and due to their ability to intercalate and exfoliate in the polymer matrix led to an improvement in mechanical, thermal and barrier properties, compared to the neat polymer. This work presents an investigation of the effects of incorporation of two different clays on mechanical and thermal properties of polypropylene (PP) matrix. PP with 1.5–3.0 wt% of the Cloisite® (commercial clay), and light green clay (noncommercial Brazilian clay), was prepared by melt extrusion process. The neat PP and its nanocomposites were characterized by mechanical tests, SEM, DSC, TGA and XRD analyses. In addition, clay characterization by XRD has also been carried out.