JORGE GABRIEL DOS SANTOS BATISTA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Capítulo IPEN-doc 29813
    Fabrication of green nanomaterials
    2023 - THIPE, VELAPHI C.; FREITAS, LUCAS F.; LIMA, CAROLINE S.A.; BATISTA, JORGE G.S.; FERREIRA, ARYEL H.; OLIVEIRA, JUSTINE P.R. de; BALOGH, TATIANA S.; KADLUBOWSKI, SLAWOMIR; LUGAO, ADEMAR B.; KATTI, KATTESH V.
    The purpose of this chapter is to discuss the production of biocompatible green nanomaterials for biomedical applications using green nanotechnology. To enhance drug loading and delivery, these nanomaterials are engineered with immunomodulatory ligands such as phytochemicals (Epigallocatechin gallate, Mangiferin, Resveratrol), proteins (albumin and papain), crosslinked hydrogels, and nanogels. The nanomaterials described herein are synthesized via redox potential of electron-dense phytochemicals that reduce metallic precursors to their stable corresponding nanoparticles and via water radiolysis with ionizing radiation as a green approach (due to the absence of any reducing agent) for use as radiosensitizers (albumin and papain nanoparticles) in nuclear medicine – theranostics applications. The phytochemicals facilitate the delivery of nanoparticles through receptor mediated endocytosis, while the proteins such as papain, due to their proteolytic action enhances the permeation of nanoparticles into tumor tissue, and albumin increase the pharmacokinetic efficiency of these nanoparticles. The nanoparticles developed have shown effectiveness against a variety of human cancers while posing no toxicity to normal tissue. Additionally, a pilot human clinical combing Ayurvedic medicine with green nanomedicine is given as a novel approach for treating breast cancer and other related illnesses. Finally, the importance of ecotoxicology for nanomaterials is discussed in order to provide safety data in relevant multiple species (fish, daphnia, algae, rodents, etc.) with paratope/epitope distributions for evaluating tissue cross-reactivity profiles in human tissues and to provide critical information on in vivo toxicity in order to predict the possible adverse effects of nanomaterials on human and environmental health as an effort to establish regulatory limits and ISO standards for nanomaterials.
  • Artigo IPEN-doc 25206
    An overview of the synthesis of gold nanoparticles using radiation technologies
    2018 - FREITAS, LUCAS F. de; VARCA, GUSTAVO H.C.; BATISTA, JORGE G. dos S.; LUGAO, ADEMAR B.
    At a nano-level, optical properties of gold are unique and gave birth to an emerging platform of nanogold-based systems for diverse applications, because gold nanoparticle properties are tunable as a function of size and shape. Within the available techniques for the synthesis of gold nanoparticles, the radiolytic synthesis allows proper control of the nucleation process without the need for reducing agents, in a single step, combined or not with simultaneous sterilization. This review details and summarizes the use of radiation technologies for the synthesis and preparation of gold nanoparticles concerning fundamental aspects, mechanism, current pathways for synthesis and radiation sources, as well as briefly outlines final applications and some toxicity aspects related to nanogold-based systems.