FABIO JULIANO DA SILVA LOPES
5 resultados
Resultados de Busca
Agora exibindo 1 - 5 de 5
Capítulo IPEN-doc 28535 Lidar observations in South America2021 - LANDULFO, EDUARDO; CACHEFFO, ALEXANDRE; YOSHIDA, ALEXANDRE C.; GOMES, ANTONIO A.; LOPES, FABIO J. da S.; MOREIRA, GREGORI de A.; SILVA, JONATAN J. da; ANDRIOLI, VANIA; PIMENTA, ALEXANDRE; WANG, CHI; XU, JIYAO; MARTINS, MARIA P.P.; BATISTA, PAULO; BARBOSA, HENRIQUE de M.J.; GOUVEIA, DIEGO A.; GONZALEZ, BORIS B.; ZAMORANO, FELIX; QUEL, EDUARDO; PEREIRA, CLODOMYRA; WOLFRAM, ELIAN; CASASOLA, FACUNDO I.; ORTE, FACUNDO; SALVADOR, JACOBO O.; PALLOTTA, JUAN V.; OTERO, LIDIA A.; PRIETO, MARIA; RISTORI, PABLO R.; BRUSCA, SILVINA; ESTUPINAN, JOHN H.R.; BARRERA, ESTIVEN S.; ANTUNA-MARRERO, JUAN C.; FORNO, RICARDO; ANDRADE, MARCOS; HOELZEMANN, JUDITH J.; GUEDES, ANDERSON G.; SOUSA, CRISTINA T.; OLIVEIRA, DANIEL C.F. dos S.; DUARTE, EDICLE de S.F.; SILVA, MARCOS P.A. da; SANTOS, RENATA S. da S.In Part II of this chapter, we intend to show the significant advances and results concerning aerosols’ tropospheric monitoring in South America. The tropospheric lidar monitoring is also supported by the Latin American Lidar Network (LALINET). It is concerned about aerosols originating from urban pollution, biomass burning, desert dust, sea spray, and other primary sources. Cloud studies and their impact on radiative transfer using tropospheric lidar measurements are also presented.Capítulo IPEN-doc 28534 Lidar observations in South America2021 - LANDULFO, EDUARDO; CACHEFFO, ALEXANDRE; YOSHIDA, ALEXANDRE C.; GOMES, ANTONIO A.; LOPES, FABIO J. da S.; MOREIRA, GREGORI de A.; SILVA, JONATAN J. da; ANDRIOLI, VANIA; PIMENTA, ALEXANDRE; WANG, CHI; XU, JIYAO; MARTINS, MARIA P.P.; BATISTA, PAULO; BARBOSA, HENRIQUE de M.J.; GOUVEIA, DIEGO A.; GONZALEZ, BORIS B.; ZAMORANO, FELIX; QUEL, EDUARDO; PEREIRA, CLODOMYRA; WOLFRAM, ELIAN; CASASOLA, FACUNDO I.; ORTE, FACUNDO; SALVADOR, JACOBO O.; PALLOTTA, JUAN V.; OTERO, LIDIA A.; PRIETO, MARIA; RISTORI, PABLO R.; BRUSCA, SILVINA; ESTUPINAN, JOHN H.R.; BARRERA, ESTIVEN S.; ANTUNA-MARRERO, JUAN C.; FORNO, RICARDO; ANDRADE, MARCOS; HOELZEMANN, JUDITH J.; GUEDES, ANDERSON G.; SOUSA, CRISTINA T.; OLIVEIRA, DANIEL C.F. dos S.; DUARTE, EDICLE de S.F.; SILVA, MARCOS P.A. da; SANTOS, RENATA S. da S.South America covers a large area of the globe and plays a fundamental function in its climate change, geographical features, and natural resources. However, it still is a developing area, and natural resource management and energy production are far from a sustainable framework, impacting the air quality of the area and needs much improvement in monitoring. There are significant activities regarding laser remote sensing of the atmosphere at different levels for different purposes. Among these activities, we can mention the mesospheric probing of sodium measurements and stratospheric monitoring of ozone, and the study of wind and gravity waves. Some of these activities are long-lasting and count on the support from the Latin American Lidar Network (LALINET). We intend to pinpoint the most significant scientific achievements and show the potential of carrying out remote sensing activities in the continent and show its correlations with other earth science connections and synergies. In Part I of this chapter, we will present an overview and significant results of lidar observations in the mesosphere and stratosphere. Part II will be dedicated to tropospheric observations.Artigo IPEN-doc 27251 Exploring the twilight zone2020 - SILVA, JONATAN da; MORAIS, FERNANDO G.; FRANCO, MARCO A.; LOPES, FABIO J.S.; ARRUDA, GREGORI de A.; YOSHIDA, ALEXANDRE C.; CORREIA, ALEXANDRE; LANDULFO, EDUARDOThis study shows a set of analysis of measurements from ground-based and satellite instruments to characterize the twilight zone (TLZ) between clouds and aerosols in São Paulo, Brazil. In the vicinity of clouds turbulence measurements showed an intense upward movement of aerosol layers, while sunphotometer results showed an increase in aerosol optical depth, and lidar measurements showed an increase in the backscatter vertical profile signal.Artigo IPEN-doc 27244 Comparison among the atmospheric boundary layer height estimated from three different tracers2020 - MOREIRA, GREGORI de A.; LOPES, FABIO J. da S.; GUERRERO-RASCADO, JUAN L.; ORTIZ-AMEZCUA, PABLO; CAZORLA, ALBERTO; OLIVEIRA, AMAURI P. de; LANDULFO, EDUARDO; ALADOS-ARBOLEDAS, LUCASThe Atmospheric Boundary Layer (ABL) is the lowermost part of the troposphere. In this work, we analysed the combination of ABL height estimated continuously by three different remote sensing systems: a ceilometer, a Doppler lidar and a passive Microwave Radiometer, during a summer campaign, which was held in Granada from June to August 2016. This study demonstrates as the combined utilization of remote sensing systems, based on different tracers, can provide detailed information about the height of ABL and their sublayers.Artigo IPEN-doc 26404 Analyzing the atmospheric boundary layer using high-order moments obtained from multiwavelength lidar data2019 - MOREIRA, GREGORI de A.; LOPES, FABIO J. da S.; GUERRERO-RASCADO, JUAN L.; SILVA, JONATAN J. da; GOMES, ANTONIO A.; LANDULFO, EDUARDO; ALADOS-ARBOLEDAS, LUCASThe lowest region of the troposphere is a turbulent layer known as the atmospheric boundary layer (ABL) and characterized by high daily variability due to the influence of surface forcings. This is the reason why detecting systems with high spatial and temporal resolution, such as lidar, have been widely applied for researching this region. In this paper, we present a comparative analysis on the use of lidar-backscattered signals at three wavelengths (355, 532 and 1064 nm) to study the ABL by investigating the highorder moments, which give us information about the ABL height (derived by the variance method), aerosol layer movement (skewness) and mixing conditions (kurtosis) at several heights. Previous studies have shown that the 1064 nm wavelength, due to the predominance of particle signature in the total backscattered atmospheric signal and practically null presence of molecular signal (which can represent noise in high-order moments), provides an appropriate description of the turbulence field, and thus in this study it was considered a reference. We analyze two case studies that show us that the backscattered signal at 355 nm, even after applying some corrections, has a limited applicability for turbulence studies using the proposed methodology due to the strong contribution of the molecular signature to the total backscatter signal. This increases the noise associated with the high-order profiles and, consequently, generates misinformation. On the other hand, the information on the turbulence field derived from the backscattered signal at 532 nm is similar to that obtained at 1064 nm due to the appropriate attenuation of the noise, generated by molecular component of backscattered signal by the application of the corrections proposed.