IVAN KORKISCHKO
1 resultados
Resultados de Busca
Agora exibindo 1 - 1 de 1
Artigo IPEN-doc 27739 Performance analysis of a water ejector using Computational Fluid Dynamics (CFD) simulations and mathematical modeling2021 - MARUM, VICTOR J. de O.; REIS, LIVIA B.; MAFFEI, FELIPE S.; RANJBARZADEH, SHAHIN; KORKISCHKO, IVAN; GIORIA, RAFAEL dos S.; MENEGHINI, JULIO R.A quasi-one-dimensional (1D) mathematical model coupled with Computational Fluid Dynamics (CFD) simulations of a water ejector is presented. Using data from CFD simulations, the mathematical model was used to calculate the friction loss coefficients of the ejector components, to predict its maximum efficiency point and to delimit its envelope of operation. The CFD approach was validated with experimental data and employed the finite element method to test the main turbulence models found in the literature (k-ε, k-u and k-u SST) for incompressible-flow ejectors. A set of operational conditions (OP) was tested and results show that the k-u SST turbulence model is the most suitable to capture the ejector flow characteristics in all OP. In addition, for higher entrainment ratio (M) values, it was observed a possible correlation between how well the boundary layer can be solved and how the model is able to capture the ejector efficiency curve. Moreover, for lower M values, another possible correlation may be stated between how the turbulence model is able to capture the velocity profile.