CAROLINA GOUVEA DE SOUZA CONTATORI

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • Artigo IPEN-doc 29066
    Responses of melanoma cells to photobiomodulation depend on cell pigmentation and light parameters
    2022 - CONTATORI, CAROLINA G. de S.; SILVA, CAMILA R.; PEREIRA, SAULO de T.; RODRIGUES, MARIA F.S.D.; LUNA, ARTHUR C. de L.; MARQUES, MARCIA M.; RIBEIRO, MARTHA S.
    Melanoma is a highly aggressive skin cancer that requires new approaches for its management. Low-level laser therapy, currently named photobiomodulation therapy (PBM), has been used to improve different conditions but its effects and safe use on melanoma remain unexplored. Herein, we investigated the PBM impact on melanoma cells differing by pigmentation using near-infrared (NIR) and red lasers in vitro. In vivo, we evaluated the effects of the red laser on melanoma-bearing mice. Amelanotic (SK-MEL-37) and melanotic (B16F10) cells were exposed in vitro to a NIR (780 nm, 40 mW) or a red laser (660 nm, 40 mW) in 3 different light doses: 30, 90, and 150 J/cm2 and responses were assessed regarding mitochondrial activity, invasiveness, migration, and VEGF production. In vivo, melanoma-bearing mice received the red laser delivering 150 J/cm2 directly to the tumor on 3 consecutive days. Mice were monitored for 15 days regarding tumor progression and mouse survival. We noticed that amelanotic cells were unresponsive to NIR light. In contrast, NIR irradiation at 30 J/cm2 promoted an increase in the invasiveness of pigmented cells, even though all light doses have inhibited cell migration. Regarding the red laser on pigmented cells, the highest light dose (150 J/cm2) decreased the VEGF production and migration. In vivo, melanoma-bearing mice treated with red laser showed smaller tumor volume and longer survival than controls. We conclude that PBM appears to be safe for amelanotic non-pigmented melanoma but triggers different responses in melanotic pigmented cells depending on light parameters. Additionally, a high dose of red laser impairs the invasive behavior of melanoma cells, probably due to the decrease in VEGF synthesis, which may have contributed to tumor arrest and increased mouse survival. These findings suggest that red laser therapy could be a new ally in the supportive care of melanoma patients.
  • Resumo IPEN-doc 26888
    Effects of low-level laser irradiation on VEGF expression of melanoma cell lines
    2020 - CONTATORI, C.G. de S.; SILVA, C.R.; YOSHIMURA, T.M.; RIBEIRO, M.S.
    Impact of low-level laser irradiation on tumor cell lines remains controversial. Vascular endothelial growth factor (VEGF) is a key molecule to form new blood vessels, which contribute for cancer development and growth. The aim of this study was to evaluate the effects of different light fluences on human melanoma SKMEL 37 cells and murine melanoma B16F10 cells using a near infrared laser (λ= 780 nm) with output power of 40 mW delivering energies of 1.2, 3.6 and 6 J (fluences of 30, 90 and 150 J/cm2, respectively). The cell lines were irradiated 24 h after they were seeded in a 96-well plate at a density of 5x103 cells per well, in triplicate at three different days. Following irradiation, both cell line supernatants were stored in Eppendorf tubes at - 20°C until VEGF-A expression measurement. Specific ELISA kits were used according to cell line (murine or human). Samples and standard solutions were added in a 96-well plate antibody-coated and incuba ted over night at 4°C. Reagent dilution and set time followed fabricant instructions. The stop solution was added and the absorbance was read in a microplate reader at 450 nm. Results showed a non-statistically significant difference among treated and control groups for both cell lines. These findings indicate that irradiation with near infrared laser does not influence VEGF expression on melanoma cell lines regardless the fluence used and should be tested to prevent cancer growth in preclinical assays.
  • Artigo IPEN-doc 25943
    Effects of near-infrared low level laser irradiation on melanoma cells
    2019 - CONTATORI, CAROLINA G. de S.; SILVA, CAMILA R.; RIBEIRO, MARTHA S.
    Low-level laser (LLL) therapy promotes biostimulating effects in cell cultures growing in nutritional deficit. However, the effects of LLLs on tumor cell lines remain controversial. Studies indicate stimulatory, inhibitory or even no influence in this type of cells. Therefore, the aim of this study was to evaluate the influence of LLL irradiation on the cell viability (with and without nutritional deficit) of human melanoma SKMEL 37 cells and murine melanoma B16F10 cells using an infrared laser (k = 780 nm) with different radiant exposures. The cell lines were subjected to the LLL 24 h after they were seeded in a 96-well plate at a density of 5 104 cells per well. The analysis of cell proliferation by mitochondrial activity occurred at intervals of 24 and 72 h after laser irradiation. At each time, culture medium was removed and 180 μL of PBS and 20 μL of MTT were added. The plates were incubated for 4 h and the absorbance was read in a microplate reader at 570 nm. Results showed a non-significant statistical difference among the groups for both cell lines regardless the nutritional medium. The metabolic pattern was similar among the groups. It is concluded that irradiation with 780 nm laser light at radiant exposures of 30, 90 and 150 J/cm2 and an output power of 40 mW does not promote cell proliferation on melanoma cell lines.