RAFAEL HENRIQUE LAZZARI GARCIA

Resumo

Ao se formar no Colégio Bandeirantes, em 1998, realizou parte do curso de graduação em Ciências Sociais pela USP (2000 e 2001) e graduou-se em Ciências Com Habilitação Em Química nas Faculdades Oswaldo Cruz (2000 a 2003). Desempenhou parte da iniciação científica no IPEN em 2001, na área de Química Ambiental, e foi bolsista no agrupamento de processos químicos do IPT, de 2001 a 2004, aonde trabalhou com cristalização e caracterização de matérias primas industriais. Obteve o grau de Mestre, em 2007, no Instituto de Pesquisas Energéticas e Nucleares, na Universidade de São Paulo, estudando cerâmicas para células a combustível SOFC, e o grau de Doutor, em 2019, na área de caracterização de combustíveis nucleares. Em 2007, realizou visitas técnicas a centros de pesquisas no Japão, como parte do programa de Intercâmbio de Grupos de Estudo, patrocinado pela Fundação Rotária. De 2008 a 2010 foi professor voluntário no curso de alfabetização de adultos promovido pelo Rotary Liberdade. Atualmente é pesquisador do Instituto de Pesquisas Energéticas e Nucleares, no Centro de Combustíveis Nucleares, responsável pelos laboratórios de fluorescência e difração de raios X, e estuda combustíveis para reatores do tipo MTR. (Texto extraído do Currículo Lattes em 4 maio 2023)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • Artigo IPEN-doc 29215
    Identification of potential plant species hyperaccumulating light rare earth elements (LREE) in a mining area in Minas Gerais, Brazil
    2022 - ASHRAF, NERMEEN; RODRIGUES, EDUARDO S.; ALMEIDA, EDUARDO de; MONTANHA, GABRIEL S.; ABREU-JUNIOR, CASSIO H.; VITOVA, MILADA; GARCIA, RAFAEL H.L.; KUPPER, HENDRIK; CARVALHO, HUDSON W.P. de
    Phytoextraction of rare earth elements (REE) from contaminated soils has gained importance during the last few decades. The Poços de Caldas municipality in Brazil is known for its mineral richness, including large reserves of REE. In this study, we report light REE (La, Ce, Sm, Pr, and Nd) in soils and plants collected in an area. Composite soil samples and plant individuals were collected, and total concentrations of LREE in soils were determined by wavelength dispersive X-ray fluorescence (WDXRF). The plant available LREE concentrations in soils were estimated upon the acetic acid method (F1 fractions) of the stepwise sequential extraction procedure, together with plant content that was analysed by inductively coupled plasma mass spectrometry (ICP-MS). The total sum concentrations of tested LREE in soils varied from 5.6 up to 37.9 g kg−1, the bioavailable fraction was ca. 1%, and a linear relationship was found between them. The only exception was Sm, whose availability was lesser and did not show a linear relationship. The concentration of LREE in non-accumulator plants varied from 1.3–950 mg kg−1 for Ce, La 1.1–99 mg kg−1, Sm 0.04–9.31 mg kg−1, Pr 0.1–24.1 mg kg−1, and Nd 0.55–81 mg kg−1. The concentration of LREE among shoots did not show a linear relation either with the available fraction or total content. The screening also revealed Christella dentata (Forssk.) Brownsey & Jermy, Thelypteridaceae family, as a promising hyperaccumulator species. The concentrations of LREE among shoots of six individuals of this species were in the ranges from 115 to 1872 mg kg−1 for Ce, La 190–703 mg kg−1, Sm 9–48 mg kg−1, Pr 32–144 mg kg−1, and Nd 105–478 mg kg−1.
  • Resumo IPEN-doc 24852
    Antimicrobial activity of Graphene Oxide/Silver nanocomposite obtained by Electron Beam
    2017 - SOUSA, THAINA S.; JACOVONE, RAYNARA M.S.; SOARES, JAQUELINE J.S.; RODRIGUES, DEBORA F.; SILVA, FLAVIA R. de O.; GARCIA, RAFAEL H.L.; ZAIM, MARCIO H.; SAKATA, SOLANGE K.
    Graphene oxide is a carbon-based nano material that has a high specific surface area, high chemical stability, excellent electrical and thermal conductivities, high mechanical resistance, the oxygen groups facilitate dispersion in polar solvents and its functionalization. In the literature, is described several methods of metal incorporation on graphene oxide surface using toxic reagents or with long periods of reaction. The objective of this work is to develop an innovative and sustainable method of incorporating silver into graphene oxide that does not involve toxic reagents or generated residues. in a short reaction time at room temperature beyond the use of the as an alternative process to the chemical processes traditional.A silver solution in the complex form was added to a dispersed graphene oxide in water/isopropanol solution. The mixture wassubmitted to a dose of radiation ranged from 150 to 400 KGy using a electron beam acelerator. The nanocomposite GO/Ag characterization was performed by thermogravimetry analysis (TGA), X-ray diffraction (XDR), scanning transmission electron microscope coupled to the energy dispersive X-ray spectrometry (TEM/EDS). The antimicrobial activity of GO/Ag was observed by Escherichia coli, a Gram negative bacterium and Bacillus subtilis a Gram positive bacterium in solid culture medium. The minimum inhibitory concentration of GO/Ag was 50 mg/L. .It is noteworthy that the incorporation of silver occurred at the same time the reduction of graphene oxide without the generation of toxic chemical residues.