SOLANGE KAZUMI SAKATA

Resumo

Possui graduação em Química bacharelado e licenciatura pela Universidade de São Paulo. Doutorado na área de Química Orgânica, com ênfase em Eletrossintese Orgânica pelo Instituto de Química da Universidade de São Paulo. Pós - doutorados em Biotecnologia no Scripps Institution of Oceanography na University of California - San Diego -USA) e no Instituto de Química da Universidade de São Paulo. Foi pesquisadora visitante no Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB-Stuttgart - Alemanha no estudo do metagenoma na produção de enzimas para fins catalíticos e no Centro Tecnológico da Marinha de São Paulo (CTM-SP) no desenvolvimento e caracterização de polímeros. Atualmente é pesquisadora do Instituto de Pesquisas Energéticas e Nucleares (IPEN- SP / CNEN) no Centro de Tecnologia das Radiações e estuda o efeitos das radiações em nano materiais de carbono. (Texto extraído do Currículo Lattes em 27 dez. 2021).

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 1 de 1
  • Artigo IPEN-doc 27410
    Low-temperature reduction of graphene oxide using the HDDR process for electrochemical supercapacitor applications
    2020 - BENITEZ JARA, F.G.; CRUZ, P.D.V.; BARBOSA, L.P.; CASINI, J.C.S.; SAKATA, S.K.; PERUZZI, A.J.; FARIA, R.N.
    In the present work, attempts of reducing a graphene oxide powder using a low temperature hydrogenation disproportionation desorption and the recombination process (L-HDDR) has been carried out. A lower processing temperature in large scale production is significant when costs are concerned. Graphite oxide was prepared using a modified Hummers’ method dispersed in ethanol and exfoliated using ultrasonication to produce Graphene Oxide (GO). Investigations have been carried out by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The experimental results of L-HDDR processing graphene oxide powder, using unmixed hydrogen at 400°C and relatively low pressures (<2 bars) have been reported. X-ray diffraction patterns showed a reduction of graphene oxide with the L-HDDR process. The results showed that both processes, the L-HDDR as well as the standard HDDR, may be applied to the reduction of graphene oxide in order to produce supercapacitor materials. The advantage of employing the L-HDDR process is a relatively low temperature reducing the cost of treatment, what is a very important factor for producing a large amount of material. Thus, the L-HDDR process has been considered a promising alternative method of reducing graphene oxide with efficiency, with the possibility of large scale production.