Nanodiagnostic tools for mycotoxins detection
dc.contributor.author | THIPE, VELAPHI C. | pt_BR |
dc.contributor.author | MENDES, GIOVANNA de O.A. | pt_BR |
dc.contributor.author | ALVES, VICTORIA M. | pt_BR |
dc.contributor.author | SOUZA, THAYNA | pt_BR |
dc.contributor.author | AJAYI, RACHEL F. | pt_BR |
dc.contributor.author | LUGAO, ADEMAR B. | pt_BR |
dc.contributor.author | KATTI, KATTESH V. | pt_BR |
dc.contributor.editor | LIM, KI-TAEK | pt_BR |
dc.contributor.editor | ABD-ELSALAM, KAMEL A. | pt_BR |
dc.coverage | Internacional | pt_BR |
dc.date.accessioned | 2023-09-06T09:46:50Z | |
dc.date.available | 2023-09-06T09:46:50Z | |
dc.date.issued | 2022 | pt_BR |
dc.description.abstract | In recent decades, mycotoxin contamination of agricultural food items has garnered considerable attention because to their high acute or chronic toxicity in humans and animals, resulting from consumption and exposure duration to contaminated food or feed. This is exacerbated by the impact of the Covid-19 pandemic, civil wars, and conflicts (e.g., the Russia-Ukraine conflict, Yemen, Ethiopia, Afghanistan, and others), which further strain the food security and nutritional status of the most vulnerable demographic groups, which are predicted to continue to deteriorate due to health and socioeconomic factors. The presence of these mycotoxins in food and animal feed has a negative impact on public health and the economy; consequently, it is crucial to detect and quantify these toxins in agricultural lots. Maintaining food quality and minimizing adverse effects on human and animal health are dependent on early detection. Conventional techniques for detecting mycotoxins include enzyme-linked immunoassay (ELISA), gas chromatography (GC), thin-layer chromatography (TLC), and high-performance liquid chromatography (HPLC). Nanomaterial-based sensor technologies provide diverse mitigation methods for quantifying single or multiple analytes, as mycotoxin co-occurrence in a single matrix has become more common. In this chapter, we describe recent advancements in nanodiagnostic techniques that permit multiplex detection of mycotoxins on a single platform. In addition, we discuss certain commercially available lateral flow immunoassay (LFIA) test strips that often use gold nanoparticles (AuNPs) or quantum dots (QDs) as colored labels for signal amplification, as well as some commercial goods with nanoformulations used in agriculture. For the commercialization of nano-based assays (nanosensors), nanodisks (nanoparticles-based artificial sensing), and that may be used as point-of-care testing (POCT) devices for mycotoxin detection, it will be necessary to conduct additional research and make additional investments to overcome the difficulties identified. | pt_BR |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | pt_BR |
dc.description.sponsorshipID | FAPESP: 19/15154-0 | |
dc.format.extent | 361-381 | pt_BR |
dc.identifier.capitulo | 15 | pt_BR |
dc.identifier.citation | THIPE, VELAPHI C.; MENDES, GIOVANNA de O.A.; ALVES, VICTORIA M.; SOUZA, THAYNA; AJAYI, RACHEL F.; LUGAO, ADEMAR B.; KATTI, KATTESH V. Nanodiagnostic tools for mycotoxins detection. In: LIM, KI-TAEK (ed.); ABD-ELSALAM, KAMEL A. (ed.). <b>Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine</b>. Cham, Switzerland: Springer Nature, 2022. , cap. 15. p. 361-381. DOI: <a href="https://dx.doi.org/10.1007/978-3-031-16084-4_15">10.1007/978-3-031-16084-4_15</a>. Disponível em: http://repositorio.ipen.br/handle/123456789/34190. | |
dc.identifier.doi | 10.1007/978-3-031-16084-4_15 | pt_BR |
dc.identifier.orcid | 0000-0002-1737-3191 | pt_BR |
dc.identifier.orcid | https://orcid.org/0000-0002-1737-3191 | |
dc.identifier.uri | http://repositorio.ipen.br/handle/123456789/34190 | |
dc.local | Cham, Switzerland | pt_BR |
dc.publisher | Springer Nature | pt_BR |
dc.rights | closedAccess | pt_BR |
dc.subject | diagnostic techniques | |
dc.subject | nanotechnology | |
dc.subject | mycotoxins | |
dc.subject | detection | |
dc.subject | food industry | |
dc.subject | safety analysis | |
dc.subject | public health | |
dc.subject | toxic materials | |
dc.title | Nanodiagnostic tools for mycotoxins detection | pt_BR |
dc.title.livro | Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine | pt_BR |
dc.type | Capítulo de livro | pt_BR |
dspace.entity.type | Publication | |
ipen.autor | VICTORIA MARTINS ALVES | |
ipen.autor | ADEMAR BENEVOLO LUGAO | |
ipen.autor | THAYNA DA SILVA SOUSA | |
ipen.autor | GIOVANNA DE OLIVEIRA ASENJO MENDES | |
ipen.codigoautor | 15538 | |
ipen.codigoautor | 339 | |
ipen.codigoautor | 15535 | |
ipen.codigoautor | 15488 | |
ipen.contributor.ipenauthor | VICTORIA MARTINS ALVES | |
ipen.contributor.ipenauthor | ADEMAR BENEVOLO LUGAO | |
ipen.contributor.ipenauthor | THAYNA DA SILVA SOUSA | |
ipen.contributor.ipenauthor | GIOVANNA DE OLIVEIRA ASENJO MENDES | |
ipen.date.recebimento | 23-09 | |
ipen.identifier.ipendoc | 29814 | pt_BR |
ipen.identifier.ods | 2 | |
ipen.type.genre | Capítulo | |
relation.isAuthorOfPublication | 6c11cb89-513f-4d89-9df7-6ecb0b049219 | |
relation.isAuthorOfPublication | 99ac24c5-2ae1-465a-a6f2-40b4d9af6af7 | |
relation.isAuthorOfPublication | e6b9cb34-17de-4f97-9c51-37a6dcd12cfc | |
relation.isAuthorOfPublication | f8b45cdc-1318-43fc-af3c-85375d9cd5e2 | |
relation.isAuthorOfPublication.latestForDiscovery | f8b45cdc-1318-43fc-af3c-85375d9cd5e2 | |
sigepi.autor.atividade | LUGAO, ADEMAR B.:339:740:N | pt_BR |
sigepi.autor.atividade | SOUZA, THAYNA:15535:740:N | pt_BR |
sigepi.autor.atividade | ALVES, VICTORIA M.:15538:750:N | pt_BR |
sigepi.autor.atividade | MENDES, GIOVANNA de O.A.:15488:740:N | pt_BR |
Pacote Original
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- 29814.pdf
- Tamanho:
- 1.73 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
Licença do Pacote
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: