Neural networks (SOM) applied to INAA data of chemical elements in archaeological ceramics from Central Amazon

dc.contributor.authorHAZENFRATZ, R.
dc.contributor.authorMUNITA, C.S.
dc.contributor.authorNEVES, E.G.
dc.coverageInternacionalpt_BR
dc.date.accessioned2018-12-04T17:09:45Z
dc.date.available2018-12-04T17:09:45Z
dc.date.issued2018pt_BR
dc.description.abstractArtificial neural networks represent an alternative to traditional multivariate techniques, such as principal component and discriminant analysis, which rely on hypotheses regarding the normal distribution of the data and homoscedasticity. They also may be a powerful tool for multivariate modeling of systems that do not present linear correlation between variables, as well as to visualize high-dimensional data in bi- or trivariate structures. One special kind of neural network of interest in archaeometric studies is the Self-Organizing Map (SOM). SOMs can be distinguished from other neural networks for preserving the topological features of the original multivariate space. in this study, the self-organizing maps were applied to concentration data of chemical elements measured in archaeological ceramics from Central Amazon using instrumental neutron activation analysis (INAA). The main objective was testing the chemical patterns previously identified using cluster and principal component analysis, forming groups of ceramics according the multivariate chemical composition. It was verified by statistical tests that the chemical elemental data was not normally distributed and did not present homogeneity of covariance matrices for different groups, as requested by principal component analysis and other multivariate techniques. The maps obtained were consistent with the patterns identified by cluster and principal component analysis, forming two chemical groups of pottery shards for each archaeological site tested. Finally, it was verified the potential of SOMs for testing if failures in underlying hypotheses of traditional multivariate techniques might be critically influencing the results and subsequent archaeological interpretation of archaeometric data.pt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)pt_BR
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)pt_BR
dc.description.sponsorshipIDFAPESP: 10/07659-0pt_BR
dc.description.sponsorshipIDCNPq: 134116/2009-7pt_BR
dc.format.extent334-340pt_BR
dc.identifier.citationHAZENFRATZ, R.; MUNITA, C.S.; NEVES, E.G. Neural networks (SOM) applied to INAA data of chemical elements in archaeological ceramics from Central Amazon. <b>Science & Technology of Archaeological Research</b>, v. 3, n. 2, p. 334-340, 2018. SI. DOI: <a href="https://dx.doi.org/10.1080/20548923.2018.1470218">10.1080/20548923.2018.1470218</a>. Disponível em: http://repositorio.ipen.br/handle/123456789/29312.
dc.identifier.doi10.1080/20548923.2018.1470218pt_BR
dc.identifier.fasciculo2pt_BR
dc.identifier.issn2054-8923pt_BR
dc.identifier.orcidaguardandopt_BR
dc.identifier.percentilfiSem Percentil
dc.identifier.percentilfiCiteScore86.50
dc.identifier.suplementoSIpt_BR
dc.identifier.urihttp://repositorio.ipen.br/handle/123456789/29312
dc.identifier.vol3pt_BR
dc.relation.ispartofScience & Technology of Archaeological Researchpt_BR
dc.rightsopenAccesspt_BR
dc.subjectneural networks
dc.subjectneutron activation analysis
dc.subjectelements
dc.subjectarchaeological specimens
dc.subjectceramics
dc.subjectarchaeological sites
dc.subjectarchaeology
dc.subjectconcentration
dc.titleNeural networks (SOM) applied to INAA data of chemical elements in archaeological ceramics from Central Amazonpt_BR
dc.typeArtigo de periódicopt_BR
dspace.entity.typePublication
ipen.autorCASIMIRO JAYME ALFREDO SEPULVEDA MUNITA
ipen.autorROBERTO HAZENFRATZ MARKS
ipen.codigoautor1325
ipen.codigoautor8240
ipen.contributor.ipenauthorCASIMIRO JAYME ALFREDO SEPULVEDA MUNITA
ipen.contributor.ipenauthorROBERTO HAZENFRATZ MARKS
ipen.date.recebimento18-12pt_BR
ipen.identifier.fiSem F.I.pt_BR
ipen.identifier.fiCiteScore2.1
ipen.identifier.ipendoc25102pt_BR
ipen.identifier.iwosWoSpt_BR
ipen.type.genreArtigo
relation.isAuthorOfPublication9f2b42a5-30f7-4805-96a1-1cde2b1a405b
relation.isAuthorOfPublication46739bef-d0fa-4d44-bb4b-27d34234779e
relation.isAuthorOfPublication.latestForDiscovery46739bef-d0fa-4d44-bb4b-27d34234779e
sigepi.autor.atividadeHAZENFRATZ, R.:8240:-1:Spt_BR
sigepi.autor.atividadeMUNITA, C.S.:1325:320:Npt_BR

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
25102.pdf
Tamanho:
2 MB
Formato:
Adobe Portable Document Format
Descrição:

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:

Coleções