Bridging the gap

dc.contributor.authorHABIB, MUHAMMAD
dc.contributor.authorMUHAMMAD, ZAHIR
dc.contributor.authorHALEEM, YASIR A.
dc.contributor.authorFAROOQ, SAJID
dc.contributor.authorNAWAZ, RAZIQ
dc.contributor.authorKHALIL, ADNAN
dc.contributor.authorSHAHEEN, FOZIA
dc.contributor.authorNAEEM, HAMZA
dc.contributor.authorULLAH, SAMI
dc.contributor.authorKHAN, RASHID
dc.coverageInternacional
dc.date.accessioned2024-04-05T19:46:59Z
dc.date.available2024-04-05T19:46:59Z
dc.date.issued2024
dc.description.abstractLayered transition metal dichalcogenides (TMDCs) have garnered immense interest in supercapacitor energy storage applications. Despite the growing reports on TMDCs in the context of electrochemical supercapacitor studies, the prevailing use of carbon-based additives often obscures their correct analysis and overshadows their intrinsic behavior. In this work, we meticulously analyzed supercapacitor characteristics of distinct TMDC materials without using carbon or any other conductive, revealing their pure intrinsic behavior, specifically focusing on highly crystalline 2H phase tantalum (Ta), tungsten (W) and zirconium (Zr)-based TMDCs, grown using the chemical vapor transport (CVT) technique. The grown materials were characterized using cutting-edge techniques like X-ray diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM), ensuring a comprehensive perspective of the synthesized TMDCs. To delve into the electrochemical properties of the prepared electrodes, extensive analysis using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) was performed. The obtained results were further supported with density functional theory (DFT) calculations to get insights regarding the charge transfer mechanism and electronic density distribution proximate to the Fermi levels. The synergy between the experimental results and theoretical calculations significantly improved the validity of our findings, thus probing the comprehension and optimization avenues of TMDCs for superior supercapacitor performance.en
dc.description.sponsorshipNational Natural Science Foundation of China (NSFC)
dc.description.sponsorshipIDNSFC: 62150410438
dc.format.extent1088-1098
dc.identifier.citationHABIB, MUHAMMAD; MUHAMMAD, ZAHIR; HALEEM, YASIR A.; FAROOQ, SAJID; NAWAZ, RAZIQ; KHALIL, ADNAN; SHAHEEN, FOZIA; NAEEM, HAMZA; ULLAH, SAMI; KHAN, RASHID. Bridging the gap: an in-depth comparison of CVT-grown layered transition metal dichalcogenides for supercapacitor applications. <b>Materials Advances</b>, v. 5, n. 3, p. 1088-1098, 2024. DOI: <a href="https://dx.doi.org/10.1039/d3ma00672g">10.1039/d3ma00672g</a>. Disponível em: https://repositorio.ipen.br/handle/123456789/48026.
dc.identifier.doi10.1039/d3ma00672g
dc.identifier.fasciculo3
dc.identifier.issn2633-5409
dc.identifier.percentilfi70.7
dc.identifier.percentilfiCiteScore80.00
dc.identifier.urihttps://repositorio.ipen.br/handle/123456789/48026
dc.identifier.vol5
dc.language.isoen
dc.relation.ispartofMaterials Advances
dc.rightsopenAccess
dc.subjectcapacitive energy storage equipment
dc.subjecttransition elements
dc.subjectmetals
dc.subjectchemical vapor deposition
dc.subjectelectrodes
dc.subjectcalculation methods
dc.subjectdensity functional method
dc.titleBridging the gap
dc.typeArtigo de periódico
dspace.entity.typePublication
ipen.autorSAJID FAROOQ
ipen.codigoautor15722
ipen.contributor.ipenauthorSAJID FAROOQ
ipen.identifier.fi5.2
ipen.identifier.fiCiteScore7.6
ipen.identifier.ipendoc30351
ipen.identifier.iwosWoS
ipen.range.fi4.500 - 5.999
ipen.range.percentilfi50.00 - 74.99
ipen.subtituloan in-depth comparison of CVT-grown layered transition metal dichalcogenides for supercapacitor applications
ipen.type.genreArtigo
relation.isAuthorOfPublication60d3fba4-40e1-482c-9eda-4530bc63fecb
relation.isAuthorOfPublication.latestForDiscovery60d3fba4-40e1-482c-9eda-4530bc63fecb
sigepi.autor.atividadeSAJID FAROOQ:15722:920:N

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
30351.pdf
Tamanho:
3.59 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:

Coleções