Diabetes monitoring through urine analysis using ATR-FTIR spectroscopy and machine learning

dc.contributor.authorFAROOQ, SAJID
dc.contributor.authorZEZELL, DENISE M.
dc.coverageInternacional
dc.date.accessioned2024-03-01T14:41:52Z
dc.date.available2024-03-01T14:41:52Z
dc.date.issued2023
dc.description.abstractDiabetes mellitus (DM) is a widespread and rapidly growing disease, and it is estimated that it will impact up to 693 million adults by 2045. To cope this challenge, the innovative advances in non-destructive progressive urine glucose-monitoring platforms are important for improving diabetes surveillance technologies. In this study, we aim to better evaluate DM by analyzing 149 urine spectral samples (86 diabetes and 63 healthy control male Wistar rats) utilizing attenuated total reflection–Fourier transform infrared (ATR-FTIR) spectroscopy combined with machine learning (ML) methods, including a 3D discriminant analysis approach—3D–Principal Component Analysis–Linear Discriminant Analysis (3D-PCA-LDA)—in the ‘bio-fingerprint’ region of 1800–900 cm−1 . The 3D discriminant analysis technique demonstrated superior performance compared to the conventional PCA-LDA approach with the 3D-PCA-LDA method achieving 100% accuracy, sensitivity, and specificity. Our results show that this study contributes to the existing methodologies on non-destructive diagnostic methods for DM and also highlights the promising potential of ATR-FTIR spectroscopy with an ML-driven 3D-discriminant analysis approach in disease classification and monitoring.
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIDFAPESP: 21/00633-0; 17/50332-0
dc.description.sponsorshipIDCAPES: 001
dc.description.sponsorshipIDCNPq: INCT-465763/2014-6; INCT 406761/2022-1; PQ-314517/2021-9; Sisfóton 440228/2021-2
dc.format.extent1-13
dc.identifier.citationFAROOQ, SAJID; ZEZELL, DENISE M. Diabetes monitoring through urine analysis using ATR-FTIR spectroscopy and machine learning. <b>Chemosensors</b>, v. 11, n. 11, p. 1-13, 2023. DOI: <a href="https://dx.doi.org/10.3390/chemosensors11110565">10.3390/chemosensors11110565</a>. Disponível em: https://repositorio.ipen.br/handle/123456789/47864.
dc.identifier.doi10.3390/chemosensors11110565
dc.identifier.fasciculo11
dc.identifier.issn2227-9040
dc.identifier.orcidhttps://orcid.org/0000-0001-7404-9606
dc.identifier.percentilfi71.2
dc.identifier.percentilfiCiteScore58.00
dc.identifier.urihttps://repositorio.ipen.br/handle/123456789/47864
dc.identifier.vol11
dc.relation.ispartofChemosensors
dc.rightsopenAccess
dc.subjectdiabetes mellitus
dc.subjectmonitoring
dc.subjectglucose
dc.subjectbiological markers
dc.subjectmachine learning
dc.subjectfourier transform spectrometers
dc.subjectspectroscopy
dc.titleDiabetes monitoring through urine analysis using ATR-FTIR spectroscopy and machine learning
dc.typeArtigo de periódico
dspace.entity.typePublication
ipen.autorSAJID FAROOQ
ipen.autorDENISE MARIA ZEZELL
ipen.codigoautor15722
ipen.codigoautor693
ipen.contributor.ipenauthorSAJID FAROOQ
ipen.contributor.ipenauthorDENISE MARIA ZEZELL
ipen.identifier.fi3.7
ipen.identifier.fiCiteScore5.0
ipen.identifier.ipendoc30225
ipen.identifier.iwosWoS
ipen.identifier.ods3
ipen.range.fi3.000 - 4.499
ipen.range.percentilfi50.00 - 74.99
ipen.type.genreArtigo
relation.isAuthorOfPublication60d3fba4-40e1-482c-9eda-4530bc63fecb
relation.isAuthorOfPublicationa565f8ad-3432-4891-98c0-a587f497db21
relation.isAuthorOfPublication.latestForDiscovery60d3fba4-40e1-482c-9eda-4530bc63fecb
sigepi.autor.atividadeFAROOQ, SAJID:15722:920:S
sigepi.autor.atividadeZEZELL, DENISE M.:693:920:N

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
30225.pdf
Tamanho:
580.49 KB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:

Coleções