Oxygen vacancy engineering of TaOx-based resistive memories by Zr doping for improved variability and synaptic behavior
Carregando...
Data
Data de publicação
Autores IPEN
Orientador
Título da Revista
ISSN da Revista
Título do Volume
É parte de
É parte de
É parte de
Nanotechnology
Resumo
Resistive switching (RS) devices are promising forms of non-volatile memory. However, one of the biggest challenges for RS memory applications is the device-to-device (D2D) variability, which is related to the intrinsic stochastic formation and configuration of oxygen vacancy (VO) conductive filaments (CFs). In order to reduce the D2D variability, control over the formation and configuration of oxygen vacancies is paramount. In this study, we report on the Zr doping of TaOx-based RS devices prepared by pulsed-laser deposition as an efficient means of reducing the VO formation energy and increasing the confinement of CFs, thus reducing D2D variability. Our findings were supported by XPS, spectroscopic ellipsometry and electronic transport analysis. Zr-doped films showed increased VO concentration and more localized VOs, due to the interaction with Zr. DC and pulse mode electrical characterization showed that the D2D variability was decreased by a factor of seven, the resistance window was doubled, and a more gradual and monotonic long-term potentiation/depression in pulse switching was achieved in forming-free Zr:TaOx devices, thus displaying promising performance for artificial synapse applications.
Como referenciar
PALHARES, JOAO H.Q.; BEILLIARD, YANN; ALIBART, FABIEN; BONTURIM, EVERTON; FLORIO, DANIEL Z. de; FONSECA, FABIO C.; DROUIN, DOMINIQUE; FERLAUTO, ANDRE S. Oxygen vacancy engineering of TaOx-based resistive memories by Zr doping for improved variability and synaptic behavior. Nanotechnology, v. 32, n. 40, p. 1-8, 2021. DOI: 10.1088/1361-6528/ac0e67. Disponível em: http://repositorio.ipen.br/handle/123456789/32368. Acesso em: 30 Dec 2025.
Esta referência é gerada automaticamente de acordo com as normas do estilo IPEN/SP (ABNT NBR 6023) e recomenda-se uma verificação final e ajustes caso necessário.