Degradation of diclofenac by electron beam irradiaton: Toxicitiy removal, by-products identification and effect of another pharmaceutical compound

Carregando...
Imagem de Miniatura

Data

Data de publicação

Orientador

Título da Revista

ISSN da Revista

Título do Volume

É parte de

É parte de

É parte de

Journal of Environmental Chemical Engineering
ODS
ODS 6
Exportar
Mendeley

Projetos de Pesquisa

Unidades Organizacionais

Fascículo

Resumo
Water contamination by the anti-inflammatory drug diclofenac (DCF) is a consequence of its incomplete removal in wastewater and sewage treatment plants, which is potentialized by interactions with other pharmaceutical contaminants. In this context, electron beam irradiation (EBI) has been considered a clean technology for degrading pharmaceutical compounds in water. Nevertheless, the identification of DCF by-products and their correlation with biological recalcitrance and acute toxicity are poorly understood. In this study, the V. fischeri test was used to characterize DCF toxicity in the absence and presence of fluoxetine (FLX), prior and after irradiation. The results showed complete DCF degradation at low dose (5 kGy). DCF concentration followed pseudo first-order decay with respect to the absorbed, with k0 = (1.33 ± 0.10) kGy−1 (DCF) and k0 = (0.90 ± 0.12) kGy−1 (DCF+FLX). In contrast, negligible TOC removal was observed even at 7.5 kGy, with the formation of recalcitrant, non-biodegradable by-products, as also suggested by the respirometry test. Despite that, the toxicity of the DCF solution diminished from (19.6 ± 1.6) TU to (6.2 ± 2.3) TU, and from (6.8 ± 0.9) TU to (3.1 ± 0.2) TU, in the absence and presence of FLX, respectively, after irradiation up to 5 kGy. Four of the eleven by-products identified by direct-injection MS were easily degraded by EBI, and one (C13H14ClNO5) was considered the least recalcitrant but the most toxic. Based on these results, a possible DCF degradation pathway is proposed, involving hydroxylation and oxidation of aromatic rings, dehalogenation and C−N bond cleavage.

Como referenciar
TOMINAGA, FLAVIO K.; BATISTA, ANA P. dos S.; TEIXEIRA, ANTONIO C.S.C.; BORRELY, SUELI I. Degradation of diclofenac by electron beam irradiaton: Toxicitiy removal, by-products identification and effect of another pharmaceutical compound. Journal of Environmental Chemical Engineering, v. 6, n. 4, p. 4605-4611, 2018. DOI: 10.1016/j.jece.2018.06.065. Disponível em: http://repositorio.ipen.br/handle/123456789/29351. Acesso em: 30 Dec 2025.
Esta referência é gerada automaticamente de acordo com as normas do estilo IPEN/SP (ABNT NBR 6023) e recomenda-se uma verificação final e ajustes caso necessário.

Agência de fomento

Coleções