The role of TiO2:SnO2 heterojunction for partial oxidation of methane by photoelectrocatalytic process at room temperature
Carregando...
Data
Data de publicação
Autores IPEN
Orientador
Título da Revista
ISSN da Revista
Título do Volume
É parte de
É parte de
É parte de
Journal of Alloys and Compounds
ODS
Resumo
Partial Oxidation of Methane into hydrocarbons using photoelectrochemical routes is attractive from a sustainability point of view owing to the possibility of using renewable energy (i.e., solar illumination) to activate
this stable molecule. However, the process demands the development of novel catalysts that can promote
methane activation and oxidation in a controlled manner to increase energy conversion efficiency. Herein, we
demonstrated that semiconductor heterostructures improved charge separation compared to the individual
materials alone. A more effortless transfer between bands favors the separation of the electron-hole (e− /h+) pairs
generated by the photoelectrocatalytic system and prevents them from recombining. This process produces
reactive oxygens, essential to driving methane oxidation conversion of the C–H bond cleavage. TiO2:SnO2
semiconductor heterojunction catalysts in film shape were investigated for methane oxidation via a photoelectrocatalytic process. The methane oxidation reactions were carried out in an inflow and sealed electrochemical system for 1 h. Liquid-state nuclear magnetic resonance revealed methanol and acetic acid as the main
liquid products, where the TiO2:SnO2 heterojunction exhibited better performance with values of 30 and 8 µmol.
cm− 2
.h− 1
, respectively. Compared to their materials alone, the superior performance of the TiO2:SnO2 heterojunction is attributed to the formation of heterostructure type II that enables a more effortless transfer between
bands, facilitating the separation of the generated e− /h+ pairs under UV-Vis irradiation. The outcomes achieved
here will motivate further studies for developing semiconductor heterojunction structure catalysts in photoelectrocatalysis to partially oxidize methane into valuable chemicals.
Como referenciar
SILVA, RICARDO M. e; SOUZA, FERNANDA de L.; DIAS, EDUARDO; SILVA, GELSON T. dos S.T. da; DURAN, FLORYMAR E.; REGO, ARJUN; HIGGINS, DREW; RIBEIRO, CAUE. The role of TiO2:SnO2 heterojunction for partial oxidation of methane by photoelectrocatalytic process at room temperature. Journal of Alloys and Compounds, v. 968, p. 1-7, 2023. DOI: 10.1016/j.jallcom.2023.172090. Disponível em: http://repositorio.ipen.br/handle/123456789/34246. Acesso em: 30 Dec 2025.
Esta referência é gerada automaticamente de acordo com as normas do estilo IPEN/SP (ABNT NBR 6023) e recomenda-se uma verificação final e ajustes caso necessário.