Combining X-Ray whole powder pattern modeling, rietveld and pair distribution function analyses as a novel bulk approach to study interfaces in heteronanostructures
Carregando...
Data
Data de publicação
Autores IPEN
Orientador
Título da Revista
ISSN da Revista
Título do Volume
É parte de
É parte de
É parte de
Small
Resumo
Understanding the microstructure in heterostructured nanoparticles is crucial to harnessing their properties. Although microscopy is ideal for this purpose, it allows for the analysis of only a few nanoparticles. Thus, there is a need for structural methods that take the whole sample into account. Here, a novel bulk‐approach based on the combined analysis of synchrotron X‐ray powder diffraction with whole powder pattern modeling, Rietveld and pair distribution function is presented. The microstructural temporal evolution of FeO/Fe3O4 core/shell nanocubes is studied at different time intervals. The results indicate that a two‐phase approach (FeO and Fe3O4) is not sufficient to successfully fit the data and two additional interface phases (FeO and Fe3O4) are needed to obtain satisfactory fits, i.e., an onion‐type structure. The analysis shows that the Fe3O4 phases grow to some extent (≈1 nm) at the expense of the FeO core. Moreover, the FeO core progressively changes its stoichiometry to accommodate more oxygen. The temporal evolution of the parameters indicates that the structure of the FeO/Fe3O4 nanocubes is rather stable, although the exact interface structure slightly evolves with time. This approach paves the way for average studies of interfaces in different kinds of heterostructured nanoparticles, particularly in cases where spectroscopic methods have some limitations.
Como referenciar
ICHIKAWA, RODRIGO U.; ROCA, ALEJANDRO G.; LOPEZ-ORTEGA, ALBERTO; ESTRADER, MARTA; PERAL, INMA; TURRILLAS, XABIER; NOGUES, JOSEP. Combining X-Ray whole powder pattern modeling, rietveld and pair distribution function analyses as a novel bulk approach to study interfaces in heteronanostructures: oxidation front in FeO/Fe3O4 core/shell nanoparticles as a case study. Small, v. 14, n. 30, p. 1800804-1 - 1800804-11, 2018. DOI: 10.1002/smll.201800804. Disponível em: http://repositorio.ipen.br/handle/123456789/29024. Acesso em: 30 Dec 2025.
Esta referência é gerada automaticamente de acordo com as normas do estilo IPEN/SP (ABNT NBR 6023) e recomenda-se uma verificação final e ajustes caso necessário.